Latest developments in EUV optics

Starlith® 3300/3350/3400 optical train

Evolutionary improvements in EUV optics Enabling 7 nm and 5 nm nodes for imaging, focus and overlay

Population shows wavefront improvements towards NXE:3400

Carl Zeiss SMT, Jack Liddle (Zeiss), Joerg Zimmermann (Zeiss), Jens Timo Neumann (Zeiss), Matthias Roesch (Zeiss), Ralf Gehrke (Zeiss), Bernhard Kneer (Zeiss) Felco van Setten (ASMI.) Jan van Schoot (ASMI.) Mark van de Kerkhof (ASMI.)

New application specific pupil types

3D mask induced pattern shift through focus Origins

Carl Zeiss SMT, Jack Liddle (Zeiss), Joerg Zimmermann (Zeiss), Jens Timo Neumann (Zeiss), Matthias Roesch (Zeiss), Ralf Gehrke (Zeiss), Bernhard Kneer (Zeiss), Felco van Setten (ASML), Jan van Schoot (ASML), Mark van de Kerkhof (ASML)

2017-06-15

ASML

ZEISS

3D mask induced pattern shift through focus Consequences

Due to oblique incidence on mask, 3D mask effect can induce imaging telecentricity (placement error divided by defocus)

Pupil tuning can compensate for 3D mask induced pattern shift through focus

Freeform pupil shapes

all examples without light loss (100% illuminator efficiency) on Starlith® 3400 illumination system

Carl Zeiss SMT, Jack Liddle (Zeiss), Joerg Zimmermann (Zeiss), Jens Timo Neumann (Zeiss), Matthias Roesch (Zeiss), Ralf Gehrke (Zeiss), Bernhard Kneer (Zeiss), Felco van Setten (ASMI.). Jan van Schoot (ASMI.). Mark van de Kerkhof (ASMI.).

2017-06-15

Pupil tuning can adjust proximity bias

NXE:3400 ready for 5nm logic Full-wafer CDU 0.2nm

Full wafer plot (H)

Plot generated by PLATO 2017.3.30+1733m

Intrafield plot (H)

Plot generated by PLATO 2017.3.30+1733

Imaging 16nm isolated spaces CDU - HTest itemUnitActualFull wafer at nominal focusnm0.2Intrafield at best focusnm0.2Intrafield at ±30 nm off focusnm0.2

Imaging 16nm isolated spaces CDU - H			
Test item	Unit	Actual	
Full wafer at nominal focus	nm	0.2	
Intrafield at best focus	nm	0.2	
Intrafield at ±30 nm off focus	nm	0.3	

Imaging 16nm isolated spaces CDU - V			
Test item	Unit	Actual	
Full wafer at nominal focus	nm	0.3	
Intrafield at best focus	nm	0.2	
Intrafield at ±30 nm off focus	nm	0.3	

Carl Zeiss SMT, Jack Liddle (Zeiss), Joerg Zimmermann (Zeiss), Jens Timo Neumann (Zeiss), Matthias Roesch (Zeiss), Ralf Gehrke (Zeiss), Bernhard Kneer (Zeiss), Felco van Setten (ASML), Jan van Schoot (ASML) Mark van de Kerkhof (ASML)

2017-06-15

NXE:3400 illuminator gives proven LCDU gains

 Reduced PFR translates in improved contrast and LCDU, (without loss of light down to 20% PFR)

Looking to the future... High-NA anamorphic systems

High NA EUV

EUVL 2016, "EUV roadmap extension by higher Numerical Aperture", Jan van Schoot

Carl Zeiss SMT, Jack Liddle (Zeiss), Joerg Zimmermann (Zeiss), Jens Timo Neumann (Zeiss), Matthias Roesch (Zeiss), Ralf Gehrke (Zeiss), Bernhard Kneer (Zeiss), Felco van Setten (ASMI), Jan van Schoot (ASMI) Mark van de Kerkhof (ASMI)

2017-06-15

Carl Zeiss SMT, Jack Liddle (Zeiss), Joerg Zimmermann (Zeiss), Jens Timo Neumann (Zeiss), Matthias Roesch (Zeiss), Ralf Gehrke (Zeiss), Bernhard Kneer (Zeiss) Felco van Setten (ASMI.) Jan van Schoot (ASMI.) Mark van de Kerkhof (ASMI.)

2017-06-15

Why is there an obscuration? Limiting angle on the mirror

Standard EUV coatings are not able to reflect the combination of large angles and large angular spread needed for high-NA.

Anamorphic imaging Prints a half-field using a current 6 inch mask

Imaging evaluation of key lithographic structures:

Comparable performance as 0.33 NA at ~40% lower resolution

Comparable Exposure Latitude at 40% lower resolution

ASML

ZEISS

Infrastructure currently under construction by Zeiss

Lead time critical components on order

Conclusions

Starlith 3400

- Better POB
- Flexibility in illuminator
- Improved imaging
- Ready for 7nm and 5nm nodes

High-NA Anamorphic

- Novel design concept
- Anamorphic design. Limits incident angles on mask, enables high contrast
- Obscuration. Limits incident angles on mirrors, enables higher tranmission.
- Infrastructure currently under construction

