Reduction of Large Killer Defects in EUV Mask Blanks

Adrian Devasahayam, Alan V. Hayes, Boris Druz, Sandeep Kohli, Rustam Yevtukhov

Veeco Instruments, Inc
Plainview, NY 11803
June 14, 2017
Disclaimer Regarding Product Improvements\Upgrades, New and Future Products and Similar Information

The information on product improvements\upgrades, new and future products and similar information contained herein represents Veeco’s current intention and is provided for informational purposes only. This information is not a commitment or legal obligation to deliver any hardware, software or functionality. The development, release and timing of any features or functionality remains at Veeco’s sole discretion and may be changed by Veeco at any time.
Agenda

» Background
 » Mask blank deposition and defects
 » Defect root causes / beam overspray issue
» Beam overspray reduction program
» Comparison of overspray reduction effects
» Process qualification of new ion optics at SEMATECH
» Summary and Conclusions
» Source Technology Improvement Path
» Acknowledgments
EUV Mask Blank Deposition and Defects

Ion Beam Low Defect Deposition System*

- Primary plasma confined to gridded ion source
- “Electrostatic shutter”

Particles added during deposition process are currently the major source of > 80 nm “Killer” mask blank defects.

U.S. Patents 5,982,101; 6,590,324, Veeco
Defect Root Causes and Beam Overspray Hypothesis

Particle Composition
A. Antohe; et al, Proc SPIE 2015

Most added defects are SS and Al/AIOx
How do particles get embedded in film?

Potential Sources:
- Substrate Handling components
- Alumina grit-blasted SS shields

“Beam overspray” issue
V. Jindal; et al, Proc SPIE 8679, 2013

A- Divergence
(High tilt angles)

B: Gas scattering

Pre
Post

SEM of Ion Beam Etched Shield Surface,
A. Leitz, et al, presented at AVS 2013

Overspray etches surface,
undercutting and dislodging particles

Beam Overspray Reduction Program

Evaluation Stages:
A. Preliminary beam overspray testing and design
B. Installation and form, fit, and function testing
C. Overspray comparison (validation of preliminary tests)
D. Process qualification and defect studies

Potential Solutions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Redesigned ion optics (reduced beam divergence)</td>
</tr>
<tr>
<td>2</td>
<td>Larger target size</td>
</tr>
<tr>
<td>3</td>
<td>Increased pumping speed (lower pressure)</td>
</tr>
<tr>
<td>4</td>
<td>Enhanced beam neutralization</td>
</tr>
</tbody>
</table>
Beam Overspray Characterization Method

- Etch profiles measured at target center and edge using coated Si wafers mounted on target.
- “Stitched profile” with thick Cr (~500Å) in center and thin Diamondlike Carbon (DLC, ~30Å) at edge.
- Pre and post measurements of thickness changes by resistivity (Cr) and ellipsometry (DLC).

Etch Rate vs. position

- Low etch rate at edge of wafer → Same method cannot be used (sensitivity).

Wafer Layout For Etch Profile Measurement

- Wafer #1: Thick Cr Film – Center of Profile
- Wafer #2: Thin DLC – Edge of Profile
Results of Overspray (OS) Tests

- **Standard Ion Optics (Std Pressure)**
- **Standard Ion Optics (Low Pressure)**
- **New Ion Optics**
- **New Ion Optics + Enhanced Neutralization**

Overspray Model: Particle Gen. Rate $\sim I_{OS}$ (beam current off the target)
ER (etch rate) Profile \Rightarrow Beam I Profile
OSR (Ratio OS to BKM OS) = I_{OS} / I_{OS-BKM}

- **Lower Pressure** actually increases OS (higher beam divergence, overrides lower gas scattering)
- **New Ion Optics with elliptical grid pattern:** OSR \sim 0.2
- **Target extension:** OSR \sim 0.05
 + **New Ion Optics:** OSR < 0.01
- **Enhanced Neutralization + New Ion Optics:** OSR < 0.01
EUV Mask Blank Process Qualification at SEMATECH

- BKM Process from first stage of marathon, includes improvements in substrate handling and substrate management protocols
- New Ion Optics installed in latter stage

A reduction in defects, and achievement of a significant number of 0-defect masks, was observed in the latter stage of the evaluation.

These results correlated with introduction of the new optics, as well as some other operational changes.

EUV Mask Blank Process Qualification at SEMATECH*

<table>
<thead>
<tr>
<th>Neutralization Mode</th>
<th>EUV Reflectivity</th>
<th>CW (nm)</th>
<th>CW Range (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>65.8%</td>
<td>13.55</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>65.8%</td>
<td>13.51</td>
<td>0.02</td>
</tr>
<tr>
<td>Enhanced</td>
<td>66.3%</td>
<td>13.56</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>65.6%</td>
<td>13.56</td>
<td>0.02</td>
</tr>
<tr>
<td>Specification</td>
<td>>65%</td>
<td>13.5</td>
<td><0.03</td>
</tr>
</tbody>
</table>

EUV properties of mask blanks fabricated with new ion optics met specification (with and without enhanced neutralization)

<table>
<thead>
<tr>
<th>PARTICLE COMPOSITION</th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe, Ni</td>
<td>4.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Al/AlOx</td>
<td>2.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Ru</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Si/SiOx</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Ca+C</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Mo / MoOx</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Other: Ti, Mo, Ni, Cu</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>NO ID</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td># blanks analyzed</td>
<td>35</td>
<td>43</td>
</tr>
</tbody>
</table>

- Major reduction in Fe,Ni and Al /AlOx particles
- Includes improvements in substrate handling and management

First reported 0-defect masks @ >54 nm!
Deposition-added yield ~30% @ >54 nm
Deposition-added yield ~38% @ >100 nm

*A. Antohe; et al, Proc SPIE 2015
Summary and Conclusions

» Overspray reduction >100X
 -larger target + improved ion optics with elliptical grid pattern

» New ion optics qualified for process
 » Correlated with first 0-defect masks in quantity, as well as first 0-defect masks @ 54 nm (improved optics only)

» Extended target + new ion optics proposed for larger overspray reduction
 • Would also enable lower gas pressure (for reduced gas scattering) with >100X overspray reduction
 • Target is fully functionally tested, not yet LDD qualified but low risk (relatively minor change)
 • Components are commercially available
Source Technology Improvement Path

- Ion beam target overspray, target nodule formation, and particle entrainment in the ion beam, are potential ultimate limitations to particle reduction in IBD

- Alternate Source Deposition Technology – “Biased Target IBD”
 - Low ion energy minimally sputters shields
 - Normal incidence sputtering prevents nodules formation
 - Plasma generation area is not confined to target. Results in particles charging and entrainment of the particles in ion beam with subsequent formation of defects on the wafer surface

- Other deposition technologies, such as conventional PVD, have own drawbacks (e.g. poor plasma confinement, non-uniform target erosion)

- TCP (Target Confined Plasma) Sputtering technology, in progress, is a promising alternative (multi-lobe, or multi-cell magnetrons)
 - Plasma confined near target / uniform erosion
 - No ion beam – no overspray

- This is still long term development, not an immediate replacement for IBD
ACKNOWLEDGEMENTS

> Roger Fremgen, Adrian Celaru, Alfred Weaver, Viktor Kanarov, Yuri Yevtukhov, and the rest of the EUV R&D and support team at Veeco

> Alin Antohe, Long He, Patrick Kearney, Frank Goodwin and other colleagues at the SEMATECH Mask Blank Development Center and the University at Albany Center

> Veeco Instruments Corp and SEMATECH

Thank You!