

EUV Lithography at the Threshold of High Volume Manufacturing

Harry J. Levinson June 2018

My first lithographic process

Prior to patterning the first lot of integrated wafers:

- ✓ Optimized a high resolution resist process
- ✓ Film stack made more lithography-friendly using Abeles transfer-matrices
 - ✓ Included design of anti-reflection coatings to metal layers
- ✓ Simulated process windows
 - ✓ Optimized mask bias

A theoretically sound lithographic process can be derailed by a broken valve

Most recent lithographic process

- Trench contact
 - Optical 193i LE³ approach was replaced with a single exposure EUV and a single etch
- Results from the two patterning approaches are similar
 - Electrical performance
 - Yield

Considerations for HVM

- As we start-up EUV lithography in HVM, focus will be on practical issues
 - Equipment reliability
 - Other factors that affect die costs
 - Yield
 - Particles on masks
 - Process control

Capital efficiency

Maintenance costs

Rework

Cycle time

Capital efficiency

Contribution of capital to wafer costs = $\frac{\text{Capital depreciation}}{\text{Throughput x Uptime}}$

Uptime \uparrow = Costs \downarrow

Time is money

Length of time	Capital cost
5 years	€100M

Time is money

Length of time	Capital cost	
5 years	\$116.6M	

Time is money

Length of time	Capital cost
5 years	\$116.6M
1 year	\$23.3M
1 month	\$1.94M
1 week	\$448k
1 day	\$64k
1 hour	\$2.7k
My 40 min. talk	\$1.8k

Maintenance costs

- Maintenance technicians
- Replacements for components
 that break
- Components that degrade
 - Collector mirrors
- Inventory costs for spare parts

Wafers require rework when processed on malfunctioning equipment

Rework

• Re-queue

• Particularly problematic if tool dedication is required

Downtime limits productivity of bottleneck tools

Capital efficiency

Maintenance costs

Rework

Cycle time

Between invention and reliability is a lot of work

The biggest problem is the light source

Equipment reliability

Source type	Repetition rate	
Excimer laser	6 kHz	20.24
EUV laser-produced plasma source	50 kHz	✓ 8.3×

"Now, here, you see, it takes all the running you can do, to keep in the same place.

"If you want to get somewhere else, you must run at least twice as fast...!" $8.3\times$

> The Red Queen in *Alice Through the Looking Glass*

EUVL equipment reliability: vacuum

Water and carbon monoxide are polarized molecules that stick to walls and parts, but not strongly.

 \Rightarrow It takes a long time to achieve ultra-high vacuum.

Several hours required to re-establish vacuum every time the chamber is opened.

time = \$\$\$

Optics, wafers, and masks are in a vacuum

Vacuum causes headaches for process control

Heat (q) per area (A) transferred by air flowing at velocity v across a surface:

$$\frac{q}{A} = h_c \Delta T$$

$$\approx (10.45 - v + 10 \sqrt{v}) \Delta T$$

 \thickapprox 2 W/cm² for v = 1 m/s and ΔT = 0.1° C

Coefficient of thermal expansion of silicon = $2.6 \times 10^{-6/\circ}$ C

For 0.1°C temperature increase, length change across 20 mm = 5 nm Radiative heat transfer:

Anodized aluminum

Reliability is just part of productivity

2000 y **52000** dd dan A²

Mask contamination from Alpha Demo Tool (ADT)

Mask contamination

Pellicles (and lack thereof)

- The lack of an HVM-worthy pellicle has significant impact on
 - Process flow
 - Wafers need to be held while masks are being qualified
 - Significant impact for low to medium volume products
 - Situation is particularly problematic when masks have defects
 - $-\operatorname{Rework}$
 - Interrupted production while masks are being cleaned or greater masks costs incurred for duplicate masks

Pellicles (and lack thereof)

- Additional costs
 - Inspection tools
 - Mask cleaner

Cycle time and masks

- Suppose that we replace 10 layers triple-patterned with optical lithography with 10 single exposure EUV lithography steps.
 - 20 fewer lithography operations
 - Reduction of thin film depositions, etches, cleans, ...
- At 1.5 days between masking steps, total process time is reduced by nearly one month by using EUV lithography!
- But what happens if we lose the cycle-time advantage of fewer operations by holding wafers while masks are qualified?

What constitutes an HVM-worthy pellicle

- Transmission mean > 90%
- Transmission non-uniformity < 1% range
- Durability
 - During normal handling
 - Shipping g-forces
 - g-forces while scanning
 - During pumping and venting cycles
 - Thermal stresses
- Lifetime
 - Cost ≤ \$1/wafer
 - Example: > 10k wafers @ \$10k/pellicle

The challenge of mask contamination

- No pellicle
 - Regular reticle qualifications
 - Disruption of manufacturing flow
 - Cost of inspection and clean tools
 - Risk of repeating defects

- Pellicle
 - Transmission loss
 - Cost of pellicles

Process control

In R&D, there are hurdles

In manufacturing, the bar is much higher

Process control for EUVL: focus control

- Simulations of conventional focus-exposure windows show large depths-of-focus for EUV lithography
- Unfortunately, little about EUV lithography is conventional

S. Raghunathan, et al., "Characterization of Telecentricity Errors in High-Numerical-Aperture Extreme Ultraviolet Mask Images," 3-beams (2014)

Process control for EUVL

Process Control: Overlay

Angstrom 3.67 nm overlay

Carbon-carbon bond	1.2-1.5 Å
Silicon-silicon bond	1.1 Å

Process Control: Overlay

0.1's Angstroms 3.67 nm overlay

Carbon atom radius	0.70 Å
Bohr radius	0.53 Å

LWR: Resist Requirements Table from 2013 ITRS

hness of	`physica	ıl gate: ((nm,	2.4		2.2
0.02	0.02	0.01	0.01	0.01	0.01	0.01
20	20	10	10	10	10	10
0.01	0.01	0.01	0.01	0.01	0.01	0.01
75	75	75	50	50	50	50
0.28	0.28	0.28	0.28	0.28	0.28	0.28
0.8	0.7	0.7	0.6	0.6	0.5	0.5
42-80	37-64	33-64	30-57	26-51	24-45	21-40
80	64	64	57	51	45	40
42	37	33	30	26	24	21
2.0	1.8	1.7	1.5	1.4	1.3	1.2
20	20		20			
20	25	22	20	14	16	14
20	18	17	15	23	13	12
18	1/	10	14	13	12	12
28	26	24	22	20	18	17
2013	2014	2015	2016	2017	2018	2019
	2013 28 18 40 20 28 2.0 42 80 42-80 0.8 0.28 75 0.01 20 0.02 hness of	2013 2014 28 26 18 17 40 32 20 18 28 25 20 1.8 28 25 20 1.8 42 37 80 64 42-80 37-64 0.8 0.7 0.28 0.28 75 75 0.01 0.01 20 20 0.02 0.02	2013 2014 2015 28 26 24 18 17 15 40 32 32 20 18 17 28 25 22 20 18 17 28 25 22 20 1.8 1.7 28 25 22 20 1.8 1.7 42 37 33 80 64 64 42.80 37.64 33.64 0.8 0.7 0.7 0.28 0.28 0.28 75 75 75 0.01 0.01 0.01 20 20 10 0.02 0.02 0.01	2013 2014 2015 2016 28 26 24 22 18 17 15 14 40 32 32 28 20 18 17 15 28 25 22 20 20 18 17 15 28 25 22 20 20 1.8 1.7 1.5 28 25 22 20 20 1.8 1.7 1.5 42 37 33 30 80 64 64 57 42.80 37.64 33.64 30.57 0.8 0.7 0.7 0.6 0.28 0.28 0.28 0.28 75 75 75 50 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01	2013 2014 2015 2016 2017 28 26 24 22 20 18 17 15 14 13 40 32 32 28 25 20 18 17 15 14 13 40 32 32 28 25 20 18 17 15 14 28 25 22 20 18 20 1.8 1.7 1.5 1.4 28 25 22 20 18	2013 2014 2015 2016 2017 2018 28 26 24 22 20 18 18 17 15 14 13 12 40 32 32 28 25 23 20 18 17 15 14 13 12 40 32 32 28 25 23 23 20 18 17 15 14 13 12 40 32 32 28 25 23 23 20 18 17 15 14 13 28 25 22 20 18 16

Values were based on CDU requirements for microprocessors with planar transistors

Device performance

LER concerns \rightarrow yield concerns

Line Break

Micro-bridging

LER concerns \rightarrow yield concerns

From Peter De Bisschop, "Stochastic effects in EUV lithography: random, local CD variability, and printing failures," JM3 (2017)

Inserting EUVL into manufacturing will drive improvements

- Many improvements are best made in a manufacturing environment
 - Yield
 - Process control
- Greater urgency for repairing equipment

First generation \rightarrow second generation lithographic technologies

- Consider the i-line to KrF transition
 - Introduction of chemically amplified resists
 - Needed to learn how to handle resist poisoning
 - Arc lamps \rightarrow excimer lasers
 - New materials for pellicles

- The transition to the second generation of KrF lithography was more evolutionary
 - A bit easier

First generation \rightarrow second generation EUV lithography

Next node = 0.7x linear shrink:

14 nm half-pitch =
$$0.34 \frac{13.5}{0.33}$$
 nm

The technical challenges of second generation EUV lithography are formidable

Mask 3D effects

CD versus focus for 2-bar structures, 32 nm pitch:

T. Last, et al. "Illumination pupil optimization in 0.33-NA extreme ultraviolet lithography by intensity balancing for semi-isolated dark field two-bar M1 building blocks," JM3

Process control for EUVL

Fig. 2. Focus shift as a function of pitch for 30nm lines. The light incident angle is 5-degree. Pei-Yang Yan, "Understanding Bossung Curve Asymmetry and Focus Shift Effect in EUV Lithography," BACUS Symposium on Photomask Technology, 2001

Source-mask optimization (SMO) for EUV

32 nm lines/spaces

OPC/RET for EUV

Mask SEM image

> Design layout

Developed resist on-wafer SEM image Deniz Civay, et al., "Subresolution assist features in extreme ultraviolet lithography," JM3 (2015)

Second generation EUV lithography will require OPC on steroids

- OPC/RET needs to balance:
 - Conventional focus-exposure windows based on CD variation
 - Constraints on MEEF
 - Mask 3D effects
 - Loss of depth-of-focus (without compensation)
 - Image placement errors
 - Including that which induces image blur
 - Avoidance of small image log-slopes to control LER
- Will need SRAFs
- Aberrations are significant for EUV lithography
 - Model-based implementation of SRAFs has proven difficult in optical lithography
 - Without the complications of pattern placement and shifts of best focus

All needed before

incorporating stochastics directly into our modeling

Stochastics – will need more photons

Stochastics – will need more photons

$$\langle n \rangle \xrightarrow{\longrightarrow} \sqrt{n} = \frac{1}{\sqrt{\langle n \rangle}}$$

To keep a constant level of variation per pixel, the beam dose will need to scale as $\frac{1}{1}$ area

 \implies Effective dose will need to double every node

Can be mitigated to some extent by increasing resist absorption

Node	Dose
7 nm	40 mJ/cm ²
5 nm	60 mJ/cm ²
3 nm	120 mJ/cm ²

Process control for EUV

Hypothetical overlay budget

Component	Error (nm)	
Exposure tool	1.8	
Reticle pattern placement	0.6	
Reticle flatness	0.6	Com
Wafer distortion	0.6	be de
Wafer/mask heating	0.6	level
Mask 3D effects	0.6	
Aberrations	0.6	1 Å =
Metrology	0.6	.,
Total	2.4	

Components need to be determined to Å

= 4% of 2.4 nm

Process control for EUV

Hypothetical overlay budget

Component	Error (nm)
Exposure tool	1.8
Reticle pattern placement	0.6
Reticle flatness	0.6
Wafer distortion	0.6
Wafer/mask heating	0.6
Mask 3D effects	0.6
Aberrations	0.6
Metrology	0.6
Total	2.4

Components need to be determined to Å level

It is a quantum world

Carbon-carbon bond	1.2-1.5 Å
Silicon-silicon bond	1.1 Å

Carbon atom radius	0.70 Å
Bohr radius	0.53 Å

It is a quantum world

Carbon-carbon bond	1.2-1.5 Å
Silicon-silicon bond	1.1 Å

Carbon atom radius	0.70 Å
Bohr radius	0.53 Å

Adamantane molecule

2.4 nm

Summary

- As we start-up EUV lithography in HVM, focus will be on practical issues
 - Equipment reliability
 - Particles on masks
 - Yield
 - Must take priority over scanner throughput
 - Other factors that affect die costs
 - Process control
- Second generation EUV lithography no rest for the weary
 - OPC challenges
 - Will need more photons
 - Future scaling requires accounting for molecular size

"In theory there is no difference between theory and practice. In practice there is."

> Yogi Berra, Hall of Fame catcher for the New York Yankees

Acknowledgements

- I would like to thank the following people.
 - Dr. Erik Hosler of GLOBALFOUNDRIES for the graph of EUV photocluster output
 - Dr. Michael Lercel of ASML for photography of NXE:3400
 - Dr. Moshe Preil of KLA-Tencor for picture of Teron 640e