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NXE:33x0 and NXE:3400 
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Planned

Shipments

Installed Base

EUV HVM introduction targeted at 7nm is supported 

by customer shipments and orders

Installed base of EUV systems is expected to double in 2018

HVM rampR&D

Q1: 3
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TWINSCAN EUV product roadmap
Supports customer roadmaps well into the next decade

Study

Development

Released

Current

Product 

status Definition

Next
1.1nm|≥ 170 wph

NXE:3400C
1.7nm|155wph

+PEP
145wph

+OFP
1.7nm

NXE:3400B
2.0nm|125wph

High NA
1.1nm|185wph

NXE:3350B
2.5|125wph

0.55 NA
res: 8nm

0.33 NA
res: 13nm

Product
Matched Overlay, Throughput

2016 2017 2018 2019 2020 2021 2022 2023 2024

3400B uptime improving to >90% for 2018/2019 HVM, 

extending productivity to >150 W/hr @ 20 mJ/cm² 
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Productivity has been increasing
Secured EUV power is matched with increasing availability

Productivity = Throughput(EUV Power)  Availability

Source power

from 10 W to > 
250 W 

Drive laser power                                       from 20 to 40 kW

Conversion efficiency (CE)                         from 2 to 6% (Sn droplet)

Dose overhead                                           from 50 to 10%

Optical transmission                                   

Source 
availability

Drive laser reliability

Droplet generator reliability & lifetime

Automation

Collector protection

EUV Power= (CO2 laser power  CE  transmission)*(1-dose overhead)
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EUV 250W source industrialization 
From proto to industrialized module in 1 year 

Pre-Pilot

250W integrated on NXE:3400B

125 wph demonstrated

Proto

Stand-alone Source  

250 Watt demonstrated

Industrialized module

1 Meter

Final industrialized 250W 

source, completed Q4-17
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Open Loop Performance  >30%
With enhanced 

isolation

Before enhanced 

isolation

Reduced 

Sigma

3.9mJ
5.1mJ

Benefits of enhanced isolation:

• Higher, stable CO2 laser power  lower dose overhead

• High conversion efficiency operation  higher pulse energy
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30%

20%

10%<10.5%
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Enhanced laser-target isolation improves performance
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EUV Source operation at 250W 
with 99.90% fields meeting dose spec

Operation Parameters

Repetition Rate 50kHz

MP power on droplet 21.5kW

Conversion Efficiency 6.0%

Collector Reflectivity 41%

Dose Margin 10%

EUV Power 250 W

Open Loop Performance

Baseline
Improved Isolation
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Sn droplet / 

plasma

H2 flow

Reaction of H radicals with 

Sn to form SnH4, which can 

be pumped away

Sn (s) + 4H (g)  SnH4 (g)

• Hydrogen buffer gas causes 

deceleration of ions

• Hydrogen flow away from collector 

reduces atomic tin deposition rate

Laser beam

Sn 

catcher

DG

EUV collector

Temperature controlled

• Vessel with vacuum pumping to 

remove hot gas and tin vapor

• Internal hardware to collect micro 

particles

Collector protection by hydrogen flow

Clever collector protection at 250W of source power has been found and is being implemented in the field

IF
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1. Clean system 
(without pellicle)

Reflected 

illumination

EUV Reticle (13.5nm)

Reticle

2. EUV pellicle

particle

pellicle

Two-fold approach to eliminate reticle front-side defects

Reticle Reticle with pellicle
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10x improvement for reticle defectivity in 2017 
Further improvement to <1/10k expected in 2018

NXE3350B: 

50/10k

NXE3400B:
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HVM

Flushing, parts 

cleanliness and 

reticle clamp 

improvements 

provide >2x 

improvement

Scanner in-situ 

cleaning and 

hydrogen curtains 

provide >4x 

improvement

17H1 17H2 2018

50 -

5 -

1 -

POD, parts 

cleanliness and 

miscellaneous 

improvements 

ongoing to reach 

<1/10k

VHV factory; 6 /10k

22 nm LS imaging test
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Productivity roadmap towards >125 WPH in place

Source power increase Source power increase

Transmission improvement

Faster 

wafer swap

Transmission 

improvement

Source power scaling 

continues to support 

productivity roadmap

resulting in

~8 wph gain
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Throughput of 140 WPH achieved at 246W

Throughput of 140 WPH achieved at 246W
Matched and single machine overlay meet spec

Actual: 

195W

Target: 

205W

Overlay in spec at 125 WPH throughput
~200W power at IF with proto version SIM

Throughput without pellicle

140 

WPH

Throughput without pellicle
125 

WPH

Full field, 96 fields at 20 mJ/cm2

*Measured 116 WPH using pellicle with >83% transmission 

without DGL membrane. Throughput with membrane is calculated.

**Improvement plan for pellicle transmission to 88% and DGL 

membrane transmission to 90% included

Throughput with pellicle+DGLm

>100* 

WPH

Full field, 96 fields at 20 mJ/cm2

Full field, 96 fields at 20 mJ/cm2

Target

Road-

map

125** 

WPH

>150 

WPHActual: 

246W

Target: 

250W

Actual: 

246W

Target: 

250W
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3rd-gen. droplet generators: average lifetime ~780 hours

Performance 

parameter
Gen III

Key Features Restart & Refill capable

Run-time
~780 hours (average)

2700 hours (max)

Start-up yield >95%

Availability 95%

Droplet diameter 27 µm

Weekly average service time
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Contact hole measurements with HMI eP5

50 Million measurements to reveal true 

histogram and failures within 2 hrs

Probability plot with Gaussian fit

Example of a missing hole

Missing CH 
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Hole clearing or closing 
if the process were a continuum

Hole (just) clears when

peak intensity = clearing threshold

Photoresist, absorbs light, produces 

acid, acid deblocks polymer;  

Deblocked polymer becomes soluble

Polymer blocking level                     

If viewed sideways

At clearing dose, dissolution 

trajectory just reaches bottom.

bottom

T
o
p
 o

f film

b
o
tto

m

Photoresist

dissolution

curve

Hole 

center 

blocking 

profile

At 94% of clearing dose

At clearing dose

Blocking level profile + 

dissolution curve 

determines hole clearing

Aerial image

in
te

n
s
it
y

Latent image
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Let’s focus on closed holes
(performed 10000 calculations per dose)

Photon and acid counts in a hole cylinder* for all 

closed holes observed  

Results of 10000 calcs

* 15nm is approximate CD of holes where closing reaches ~10%

30mJ/cm2 CD~15nm 36mJ/cm2 CD~19.5nm

39mJ/cm2 CD~21.2nm33mJ/cm2 CD~17.4nm

As dose increases, hole closing 

is less and less due to low 

photon or acid counts
Data for 10000 holes
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Local effects “beyond dose” 

Why is this 

hole closed?

(seed 58)

Compare seed 58 with others

seed 43

#abs photons in cyl # acids

stochastic 

seed

nom dose 

mJ/cm2 CD (nm) 27nm 15nm 15nm

58 30 0 961 378 1799

38 30 15.5 913 377 1845

43 30 13 971 401 1771

seed 38seed 58

closed hole

fewer photons but open

fewer acids but open
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Local effects “beyond dose” 

seed 43seed 38seed 58
developed 

images

latent 

images

De-blocked 

polymer 

profile gives 

dissolution 

path to 

bottom

No 

dissolution 

path to 

bottom!

road block

Spatial distribution of 

components determine hole 

closing near threshold dose
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An idea (from Hansen) for extrapolation to low HCR

seed6

Complex CAR model Simplified direct photolysis 

model with no quencher 2018 EUVL Workshop
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seed 58

developed 

images

latent images No 

dissolution 

path to 

bottom!

road block

Mechanism for closing is still 

local fluctuations – lower 

frequency variation with this 

simpler, “more deterministic” 

process



Our findings on EUV resists

• Simulations show that hole closing is not simply explained by local dose 

variations  

• Spatially dependent concentration variations (fluctuations) are also key

• At a particular dose there will be a mean spatial distribution of blocked 

polymer with a random variation; every hole is different

• Changing dose affects the mean level but not the fluctuation amplitude

• Two possible ways to reduce amplitudes of latent image fluctuations and 

hole closing rates:

• “Simpler” and/or more uniform resist chemistry

• Higher acid and/or quencher diffusion (but may limit resolution)
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Phase-Control SMO
Optimization of source and mask to improve imaging robustness against 

phase effects from 3D masks and scanner aberrations

focus budget 

+/-40nm

dose budget 

+/-10%

mask budget 

+/-0.25nm

Z9 budget 

+/-Z4

Z17 budget 

+/-Z4

Z21 budget 

+/-Z4

Z4 budget 

+/-Z4

Z12 budget 

+/-Z4

Z5 budget 

+/-

෍

𝑃𝑊

𝑒𝑝𝑒𝑛

Source and mask optimized to be less 

sensitive to process variations such 

as focus, dose, mask and aberrations

Customized cost 

function to include 

aberration impact

Baseline 

SMO

PC-SMO

• Zernike
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Phase-Control SMO: sensitivity analysis

Z8 Z20

Select Z8, Z20 as most 

critical

Z31

• Must consider Zernike sensitivity of critical patterns

2BarH_T

2 BarH_B
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Progression of EUV lithography for logic products

1st Generation (foundry 7-nm node)

k1 ~ 0.45

Lithography process relatively straight forward with PC-SMO

The right time to perfect infrastructure

2nd Generation 

k1 ≤ 0.4

Lithography process becomes more sophisticated

3rd Generation

k1 ≤ 0.3

Process sophistication; DTCO; Double patterning

4th Generation

0.55 NA
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Larger NA results in higher effective throughput
NA limits # of LE steps and dose needed for LCDU

* Effective throughput = throughput / # LE steps

Quasar Illumination1
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TPT reduction by dose for LCDU and LEn
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High-NA system architecture available

TWINSCAN NXE 3400

New Frames

Improved thermal and dynamic 

control with larger optics

Lens & illuminator

• NA 0.55 for sub-10nm resolution

• High transmission

Source

Compatible with 0.33 NA sources, power 

improvements opportunities  over time

Wafer Stage

2x increase in acceleration

Improved metrology

2~3x improvement in overlay/focus

Mask Stage

4x increase in acceleration

2018 EUVL Workshop

Slide 26

Public



Stitching feasibility study ongoing 

24nm dense holes successfully stitched on NXE:3300 at IMEC

etched Black Border

etched Black Border

Programmed 

offsetResults for 3 different offsets:

Next steps:

• Determine process latitude

• OPC needed?

• Different structures

First stitching experiments:

• 24nm Dense CH’s

• Programmed offsets

• JSR 3030

Courtesy Vincent Wiaux, IMEC
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High-NA projection optics design available
Larger elements with tighter specifications

NA 0.33 NA 0.55
Design examples

Extreme aspheres enabling 

further improved wavefront / imaging performance

Big last mirror driven by

High-NA

Obscuration enables

higher optics Transmission 

Mask level

Wafer level

High NA optics design supports 
significant reduction in wavefront RMS

systems

rm
s

[n
m

]

NXE:3300B

NXE:3350B

NXE:3400B

High NA
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Long-lead items getting in place
Vessel parts are machined, 1st robots for large mirror handling

Courtesy Carl Zeiss SMT GmbH, 2018-02-21

Chamber door and vessel Outer mirror handling robot
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High-NA CRAO = 5.355°

0.33 CRAO = 6°

High-NA system has smaller M3D effects than 0.33NA
Smaller mask angles of incidence thanks to higher mag and smaller CRAO

*L. de Winter, Understanding the Litho-impact of Phase due to 3D Mask-Effects when using off-axis illumination, EMLC 2015
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Impact of M3D effects can be mitigated via
SRAF’s, M3D-aware SMO, thinner (high-k) absorber

Eelco van Setten et al., EUVL 2017

SRAF size adjusted per pitch:

• Horizontal: 20 – 56 nm @mask

• Vertical: 16 – 30 nm @mask

• Using SRAF’s 

• Using M3D aware SMO • Using a thinner (high-k) absorber
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Sub-resolution assist features recover contrast loss from 
obscuration and reduce Mask3D overlay

SRAF size adjusted per pitch:

• Horizontal: 20 – 56 nm @ mask

• Vertical: 16 – 30 nm @ mask

DipoleY / X 55nm Ta-based
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High k absorber can increase contrast and reduce 
Mask3D overlay by ~2x for dipole test case

Alternative mask stack:

• 33nm high k material (Ni used)

DipoleY / X
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Ernest Chen

UCLA
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On 0.33NA Systems

• Shipped 3 systems in Q1 2018

• Received 9 orders in Q1 2018

• Planned to ship 20 systems in 2018

• Production capacity of at least 30 systems in 2019

On 0.55NA Systems

• Received 4 orders of R&D systems from 3 customers in Q1 2018

• targeted to start shipping by end of 2021

• Sold options for 8 early volume systems in Q1 2018

• targeted to start shipping in 2024

Customer commitment to EUV volume manufacturing 

continues
2018 EUVL Workshop
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In-burst EUV power of 410 W
Demonstrated IF EUV pulse energy of 8.2 mJ at 50 kHz

Brightness ~ 1 kW/mm2 sr
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Short burst EUV 

demonstration on 

research platform

Histogram EUV Pulse Energy EUV Pulse Energy at IF 
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On a development EUV source at ASML San Diego

EUV bursts at 3% duty cycle



Droplet generator: principle of operation

Tin droplets at 80 kHz and at different applied pressures

Images taken at a distance of 200 mm from the nozzle

1.5 mm

Increasing 

Droplet Generator 

Pressure
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Thank you !

I would like to thank my ASML colleagues for all this work. 
In particular, I thank Steve Hansen, Igor Fomenkov, 
Roderik van Es, Jan van Schoot, Jo Finders, Hans Meiling, 
and Stephen Hsu whose presentation material I used or 
with whom I had fruitful discussions.


