Public

ASML

Continued Scaling in Semiconductor Manufacturing with EUV Lithography

Anthony Yen

Vice President, Technology Development Centers

2018 EUVL Workshop, Berkeley, CA, 14 June 2018

EUV HVM introduction targeted at 7nm is supported by customer shipments and orders

ASML

Public Slide 3 2018 EUVL Workshop

Installed base of EUV systems is expected to double in 2018

TWINSCAN EUV product roadmap

Supports customer roadmaps well into the next decade

3400B uptime improving to >90% for 2018/2019 HVM, extending productivity to >150 W/hr @ 20 mJ/cm²

ASML

Public Slide 4 2018 EUVL Workshop

Productivity has been increasing

Secured EUV power is matched with increasing availability

Public Slide 5 2018 EUVL Workshop

Productivity = Throughput(∞ EUV Power) × Availability

EUV Power= (CO₂ laser power \times CE \times transmission)*(1-dose overhead)

Source power from 10 W to > 250 W	Drive laser power	from 20 to 40 kW			
	Conversion efficiency (CE)	from 2 to 6% (Sn droplet)			
	Dose overhead	from 50 to 10%			
	Optical transmission				
Source	Automation				
Source	Automation				
Source availability -	Automation Collector protection				
Source availability -	AutomationCollector protectionDroplet generator reliability & lifetime				

EUV 250W source industrialization From proto to industrialized module in 1 year

Public Slide 6 2018 EUVL Workshop

Enhanced laser-target isolation improves performance

Benefits of enhanced isolation:

- Higher, stable CO₂ laser power → lower dose overhead
- High conversion efficiency operation → higher pulse energy

ASML Public Slide 7

2018 EUVL Workshop

EUV Source operation at 250W

with 99.90% fields meeting dose spec

Operation Parameters					
Repetition Rate	50kHz				
MP power on droplet	21.5kW				
Conversion Efficiency	6.0%				
Collector Reflectivity	41%				
Dose Margin	10%				
EUV Power	250 W				

Public Slide 8 2018 EUVL Workshop

Collector protection by hydrogen flow

ASML

Clever collector protection at 250W of source power has been found and is being implemented in the field

Two-fold approach to eliminate reticle front-side defects

ASML Public Slide 10 2018 EUVL Workshop

1. Clean system

(without pellicle)

2. EUV pellicle

EUV Reticle (13.5nm)

Reticle with pellicle

10x improvement for reticle defectivity in 2017 Further improvement to <1/10k expected in 2018

ASML

Public

Slide 11

Productivity roadmap towards >125 WPH in place

ASML

Throughput of 140 WPH achieved at 246W

Matched and single machine overlay meet spec

Throughput of 140 WPH achieved at 246W

3rd-gen. droplet generators: average lifetime ~780 hours

ASML

Public Slide 14 2018 EUVL Workshop

Weekly average service time

Contact hole measurements with HMI eP5

ASML

Public Slide 15 2018 EUVL Workshop

50 Million measurements to reveal true histogram and failures **within 2 hrs**

Probability plot with Gaussian fit

Hole clearing or closing if the process were a continuum

Let's focus on closed holes (performed 10000 calculations per dose)

Photon and acid counts in a hole cylinder* for all closed holes observed

HCR avg CD fract closed 30mJ/cm² CD~15nm dose 2050 2100 30 14.88 0.0884 ○ 30 ● 30 close 2050 2000 33 17.45 0.0136 2000 36 19.46 0.0019 closed holes 1950 39 0.0002 E 1900 21.19 1900 42 22.74 0 1850 1850 .⊑ 1800 45 24.15 0 1800 48 25.45 0 1750 ä 1750 51 26.69 0 * 1700 15nm circle 1700 1900 1650 1650 1600 1600 1850 300 500 300 350 30ml # photons abs in 15nm circle 1800 33mJ/cm² CD~17.4nm acids in . 33 2100 2050 1750 33 33 33 closed 2050 2000 36 2000 1950 1700 1950 1900 <u>+</u> 39 1900 1650 E 1850 1850 .⊑ 1800 1600 1800 1750 8 1750 300 350 400 450 500 550 600 * 1700 1700 # abs photons in 15nm circle Results of 10000 calcs 1650 1600 1600 300 350

Data for 10000 holes

* 15nm is approximate CD of holes where closing reaches ~10%

As dose increases, hole closing is less and less due to low photon or acid counts

Local effects "beyond dose"

Compare seed 58 with others

				#abs photons in cyl		# acids	
sto	ochastic seed	nom dose mJ/cm2	CD (nm)	27nm	15nm	15nm	Ī
	58	30	0	961	378	1799	
	38	30	15.5	913	377	1845	
	43	30	13	971	401	1771	

closed hole fewer photons but open fewer acids but open

seed 58

seed 38

seed 43

X6(64) - 16.0.0

Local effects "beyond dose"

0.000

-20

-10

0 Y Position (nm)

10

20

Spatial distribution of components determine hole closing near threshold dose

ASML

20

Y Position (nm)

Public Slide 19

Y Position (nm)

An idea (from Hansen) for extrapolation to low HCR

ASML

Public Slide 20 2018 EUVL Workshop

developed Complex CAR model

Simplified direct photolysis model with no quencher

X6(64) - 16.0.0.21

Plot of polymer blocking level at hole center

Our findings on EUV resists

ASML

Public Slide 21 2018 EUVL Workshop

- Simulations show that hole closing is not simply explained by local dose variations
- Spatially dependent concentration variations (fluctuations) are also key
 - At a particular dose there will be a mean spatial distribution of blocked polymer with a random variation; every hole is different
 - Changing dose affects the mean level but not the fluctuation amplitude
- Two possible ways to reduce amplitudes of latent image fluctuations and hole closing rates:
 - "Simpler" and/or more uniform resist chemistry
 - Higher acid and/or quencher diffusion (but may limit resolution)

Phase-Control SMO

Optimization of source and mask to improve imaging robustness against phase effects from 3D masks and scanner aberrations

Source and mask optimized to be less sensitive to process variations such as focus, dose, mask and aberrations

Baseline SMO

Customized cost function to include aberration impact

PC-SMO

2018 EUVL Workshop

Public Slide 22

Phase-Control SMO: sensitivity analysis

Must consider Zernike sensitivity of critical patterns

•

critical

2 BarH_B

ASML

Public Slide 23 2018 EUVL Workshop

Progression of EUV lithography for logic products

Public Slide 24 2018 EUVL Workshop

```
1<sup>st</sup> Generation (foundry 7-nm node)
          k_1 \sim 0.45
          Lithography process relatively straight forward with PC-SMO
          The right time to perfect infrastructure
2<sup>nd</sup> Generation
          k_1 \le 0.4
          Lithography process becomes more sophisticated
3<sup>rd</sup> Generation
          k_1 \le 0.3
          Process sophistication; DTCO; Double patterning
4<sup>th</sup> Generation
          0.55 NA
```

Larger NA results in higher effective throughput NA limits # of LE steps and dose needed for LCDU

ASML

2018 EUVL Workshop

Public Slide 25

* Effective throughput = throughput / # LE steps

High-NA system architecture available

ASML

Public

New Frames Improved thermal and dynamic control with larger optics

Wafer Stage 2x increase in acceleration **Source** Compatible with 0.33 NA sources, power improvements opportunities over time

Courtesy Vincent Wiaux, IMEC

High-NA projection optics design available Larger elements with tighter specifications

Design examples

NA 0.33

Mask level

Long-lead items getting in place Vessel parts are machined, 1st robots for large mirror handling

Outer mirror handling robot

ZEISS

Public Slide 29 2018 EUVL Workshop

Courtesy Carl Zeiss SMT GmbH, 2018-02-21

High-NA system has smaller M3D effects than 0.33NA Smaller mask angles of incidence thanks to higher mag and smaller CRAO

ASML

Public

Slide 30

*L. de Winter, Understanding the Litho-impact of Phase due to 3D Mask-Effects when using off-axis illumination, EMLC 2015

Impact of M3D effects can be mitigated via SRAF's, M3D-aware SMO, thinner (high-k) absorber

Public Slide 31 2018 EUVL Workshop

- Using SRAF's
- Using M3D aware SMO

High k absorber can increase contrast and reduce Mask3D overlay by ~2x for dipole test case

Public Slide 33 2018 EUVL Workshop

Alternative mask stack:

33nm high k material (Ni used)

Summary of RIE Etching of Ni

Public Slide 34 2018 EUVL Workshop

 Chlorine plasma was utilized to change metallic Ni to a surface layer of NiCl₂, and removed with subsequent hydrogen plasma

C-DEN • PATTERNING• 3

Presented at C-DEN May 2018 Workshop in San Jose, CA 05/18/2018

Customer commitment to EUV volume manufacturing continues

Public Slide 35 2018 EUVL Workshop

On 0.33NA Systems

- Shipped 3 systems in Q1 2018
- Received 9 orders in Q1 2018
- Planned to ship 20 systems in 2018
- Production capacity of at least 30 systems in 2019

On 0.55NA Systems

- Received 4 orders of R&D systems from 3 customers in Q1 2018
 - targeted to start shipping by end of 2021
- Sold options for 8 early volume systems in Q1 2018
 - targeted to start shipping in 2024

In-burst EUV power of 410 W Demonstrated IF EUV pulse energy of 8.2 mJ at 50 kHz

ASML

Public Slide 36 2018 EUVL Workshop

Droplet generator: principle of operation

ASML

Public Slide 37 2018 EUVL Workshop

Tin droplets at 80 kHz and at different applied pressures Images taken at a distance of 200 mm from the nozzle I would like to thank my ASML colleagues for all this work. In particular, I thank Steve Hansen, Igor Fomenkov, Roderik van Es, Jan van Schoot, Jo Finders, Hans Meiling, and Stephen Hsu whose presentation material I used or with whom I had fruitful discussions.

ASML

Thank you !