Current status, challenges, and outlook of EUV Lithography for High Volume Manufacturing

Britt Turkot
Intel Corporation
• Milestone Progress
 • Exposure Tool
 • Reticle
 • Pellicle
 • Infrastructure
• HVM Considerations
• Looking Ahead
 • Materials
 • High NA
• Conclusion
NXE:33x0 combined scanner/source availability

- Improvement from NXE:33X0 to NXE:3400 platform
- Top contributor is exposure source
- Need continued focus on availability
NXE:3400 combined scanner/source availability

- Best data on 3400 comes from dedicated effort on small number of systems – little bit of luck and lots of focus
- Need to scale to install fleet
Exposure source power meeting roadmap

- Meeting 250W exposure source power established for NXE:3400
- Proliferation to field systems
- Continued emphasis ensuring sufficient power overhead for predictable quality and output
Collector lifetime improvement continues

- Collector degradation follows continuous, roughly linear trend – predictable lifetime
- Recent breakthrough advances in reflectivity as f(GP)
- Bottom Line: expect significant correlation to system availability and OpEx
Intel’s Pilot Line: CD trend

- Unfiltered data
- Timeline > 1 year
- Multiple masks
- Multiple features
- Multiple tools
- CD control within tight distribution
- Stable CD performance trend
Scanner cleanliness: Intel reticle defectivity

- Variability in defect level after ‘burn-in’; many tools showing no adders/reticle load for several weeks
- Every tool has shown adders after many weeks with no adders
- NXE:3400 cleaner overall
- Unpredictability of adder events drives need for pellicle
ASML two-fold approach: one element is to improve cleanliness → avoid particle generation in scanner

- Investigation continues into origin of defects
- Improved understanding of nature of defects introduced by scanner
Pellicle membrane progress and infrastructure

- Steady progress in pellicle membrane defect levels since Q3'16
- Multiple membranes with zero defects >10um
- Continued focus expected to deliver volumes for HVM
Intel EUV mask manufacturing is capable of volume production with full specification product requirements.
EUV infrastructure readiness snapshot

EUV infrastructure has 8 key programs
7 are ready or near-ready now; 1 has significant gaps

- **E-beam Mask Inspection**: In use for low volume production. Need TPT increase.
- **Actinic Blank Inspection (ABI)**: Ready for qualification of HVM quality blanks
- **AIMS Mask Inspection**: Systems installed in field; NXE:3400 illumination emulation underway
- **Pellicle**: ASML commercializing
- **EUV blank quality**: Process and yield improvements continue
- **Blank multi-layer deposition tool**: Improving defect results
- **EUV resist QC**: RMQC center at IMEC online
- **Actinic Patterned Mask Inspection (APMI)**: High resolution PWI for fab. Still need actinic inspection in mask shop.

★ Significant progress in EUV infrastructure

From 2017 SPIE

Judged as of Today
Overall milestone progress messages

- Combined scanner/source availability improving
 - Exposure source remains largest contributor to tool downtime
 - NXE:3400 availability encouraging; need to scale to install fleet
- Exposure source power meeting 250W roadmap, field upgrades in process
- Scanner defectivity levels improving with introduction of NXE:3400
 - Every tool has shown defects after weeks of clean performance
 - Underscores need for pellicle and associated infrastructure / support
- Significant progress in pellicle program over past year
 - Pellicle membranes manufactured with zero defects >10um; lifetime and power resiliency continue to increase
- Progress has been made in pellicle membrane material development, but continued improvement necessary for increasing transmission, withstanding increased source power, and extending lifetime (OpEx)
 - Pellicle membrane power resiliency needs to keep pace with increasing source power (300W, 500W, …)
- Manufacturing increasing number of defect-free 7nm EUV masks
- Inspection of pelliclized reticles is needed to ensure predictable yield. APMI is not a show-stopper, but without it yield and cost may be an issue – no change
Outline

- Milestone Progress
 - Exposure Tool
 - Reticle
 - Pellicle
 - Infrastructure

- HVM Considerations

- Looking Ahead
 - Materials
 - High NA

- Conclusion
HVM insertion considerations ➔ Predictability

• Capability demonstrated:
 ✓ Exposure source power meeting HVM roadmap
 ✓ Pilot line imaging performance

• What is impact on fleet predictability of availability vs. power?

• Simulate HVM conditions – how do these parameters affect reliable TPT?
 • Simulation methodology assumptions:
 • Acceptable level of collector degradation (50%-100% RR)
 • Fixed exposure source power (300W)
 • Vary availability 65%-95%
 • 10,000 runs with comparable results for tool count N=25 and N=100
Impact of Availability is critical

65% availability

• Wide spread in productivity
Impact of Availability is critical

- Fleet productivity distribution improves with increasing availability.
Impact of Availability is critical

- 65% availability
- 75% availability
- 85% availability
Impact of Availability is critical

Best-case productivity of fleet with 65% average system availability is less than the worst-case productivity of a fleet with 95% average availability.
Availability vs. Source Power

10% availability equivalent to ~50W power in terms of fleet productivity

Cannot overlook importance of availability
Outline

• Milestone Progress
 • Exposure Tool
 • Reticle
 • Pellicle
 • Infrastructure

• HVM Considerations
 • Looking Ahead
 • Materials
 • High NA

• Conclusion
EUV Materials

https://geoffpark.files.wordpress.com/2015/04/swans3.jpg

EUV materials and resolution

- EUV enables 2D design features, e.g. corner segments
- Need materials that can take advantage of improved EUV resolution
- Adequate for EUV introduction
- Need materials that are tunable for desired properties
- Materials development constrained by photon availability (BL, MET, NXE)

For continued material development, suppliers need an understanding of fundamental properties of materials
Looking ahead: More than photon shot noise

NXE3300, 28 nm hole
72K measurements

CAR 1
<20 mJ/cm²

CAR 2
<20 mJ/cm²

CAR 3
>2.5X dose vs resist 1 and 2
~ 10% CDU improvement

- 2.5x higher dose provides <10% LCDU improvement
- Not consistent with photon shot noise alone
- There must be a chemical effect
- We must gain a deeper understanding of how EUV radiation interacts with resist and design resist for stochastics
- Next generation EUV requires materials innovation

Materials suppliers must have the means to study fundamental properties of materials
EUV materials

- EUV material interaction processes are complex
 - Photon absorption
 - Photoelectron gen.
 - Secondary electron gen.
 - Radical generation
- Electron-stimulated process induce chemical reactions
- Dissolution mechanism varies for different material systems
- Not one-size-fits-all

Resist is progressing
Exposures at PSI, SEM at ASML

<table>
<thead>
<tr>
<th>Resolution [hp]</th>
<th>Inpria</th>
<th>CAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>13nm</td>
<td>![Image](LWR = 3.2nm)</td>
<td>![Image](LWR = 5.1nm)</td>
</tr>
<tr>
<td>12nm</td>
<td>![Image](LWR = 3.4nm)</td>
<td>![Image](LWR = 5.7nm)</td>
</tr>
<tr>
<td>11nm</td>
<td>![Image](LWR = ?nm)</td>
<td>![Image](LWR = ?nm)</td>
</tr>
<tr>
<td>10nm</td>
<td>![Image](LWR = ?nm)</td>
<td>![Image](LWR = ?nm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose (mJ/cm²)</th>
<th>Inpria</th>
<th>CAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>![Image](LWR = 3.2nm)</td>
<td>![Image](LWR = 5.1nm)</td>
</tr>
<tr>
<td>55</td>
<td>![Image](LWR = 3.4nm)</td>
<td>![Image](LWR = 5.7nm)</td>
</tr>
<tr>
<td>69</td>
<td>![Image](LWR = ?nm)</td>
<td>![Image](LWR = ?nm)</td>
</tr>
<tr>
<td>70</td>
<td>![Image](LWR = ?nm)</td>
<td>![Image](LWR = ?nm)</td>
</tr>
</tbody>
</table>

Mask and process optimization will improve line quality. <10nm hp is expected with suitable mask.

J. Van Schoot, ASML, February 2018

Must consider multiple options / material systems
High NA EUV: The next step

- Next logical step

Business as usual: increase NA as far as possible

Relative improvement: 5X over ArFi, 40% over 0.33 NA EUV

![Diagram showing NA increase timeline]

- Major technology step (e.g. source, mirror)
- Optimization of NA

Year of introduction:
- EUV 0.25
- EUV 0.33
- EUV 0.55

Slide courtesy ASML February 2018
Outline

• Milestone Progress
 • Exposure Tool
 • Reticle
 • Pellicle
 • Infrastructure

• HVM Considerations

• Looking Ahead
 • Materials
 • High NA

• Conclusion
Conclusion: Preparation for HVM and beyond

• Exposure source → First field system meeting source power roadmap: power improvements proliferating to install fleet
• Availability → NXE:3400 platform demonstrating improved capability – keep focus
• Pellicle → Needed to ensure EOL yield; pellicle program continues to make significant progress
• Infrastructure → demonstrating increased maturity; single gap remains
• HVM requires predictability
 – Output impact of 1% improvement in availability > 4% improvement in source power
 – OpEx (mostly source consumables) – Collector lifetime improvements encouraging – need to translate to field systems
• Materials
 – Materials performance – Won’t gate introduction of EUV, but need to consider stochastics for decreasing feature sizes and high NA: need to understand the interaction of EUV radiation with resist and design resist materials for stochastics
Acknowledgements

Steve Carson
Anna Lio
Mark Phillips
Brian McCool
Eric Stenehjem
Tim Crimmins
Ying Zhou
Markus Kuhn
Curt Ward
Sam Sivakumar
Guojing Zhang
Ted Liang
Jeff Farnsworth
Sang Lee
Florian Gstrein
Frank Abboud
Backup