

Multilayer Optics for 1 nm to 13.5 nm: Can we reduce the litho wavelength further?

2018 International Workshop on EUV and soft X-Ray Sources

Torsten Feigl, Hagen Pauer, Tobias Fiedler, Marco Perske, Philipp Naujok

optiX fab GmbH, Jena

Prague, November 6, 2018

- Multilayers for 1 nm ... 13.5 nm low reflectance, narrow bandwidth
- Narrow band sources meet narrow band multilayers
- Summary

- Multilayers for 1 nm ... 13.5 nm low reflectance, narrow bandwidth
- Narrow band sources meet narrow band multilayers
- Summary

optiX fab.

History

- 1997: Start of EUV multilayer development @ Fraunhofer IOF
 2013: August 1st: Operations start @ optiX fab.
 TODAY: Delivery of 11,052 EUV and X-ray mirrors to customers
- Mission Fabrication of customized EUV optics and optical components for EUV lithography @ 13.5 nm, for EUV, soft and hard X-ray applications, synchrotron and FEL beamlines, metrology, R&D, HHG sources, etc.

Torsten Feigl

Marco Perske

Hagen Pauer

Tobias Fiedler

Philipp Naujok

- Multilayers for 1 nm ... 13.5 nm low reflectance, narrow bandwidth
- Narrow band sources meet narrow band multilayers
- Summary

Multilayer mirror – principle of constructive interference

Mo/Si multilayer, TEM

50 nm

E. Spiller, *Low-loss reflection coatings using absorbing materials*, Appl. Phys. Lett. **20**, pp. 365-367, 1972.

Multilayers for 13.5 nm

Measured @PTB Berlin

ML coatings for short wavelengths

main issues for ML coatings at shorter wavelengths ($\lambda < 13.5$ nm):

1st: lower reflectance

typical experimental values for near normal incidence:

13.5 nm: $R \le 70 \%$

6.7 nm: $R \le 65 \%$

- 4.4 nm: $R \le 15 \%$
- 2.4 nm: $R \le 20 \%$

1st issue: lower reflectance at lower wavelengths

- real systems: reflection losses due to imperfect interfaces:
 - roughness
 - interdiffusion
 - formation of compounds

HR-TEM of a La/B-ML for 6.7 nm showing interdiffusion between La and B

1st issue: lower reflectance at lower wavelengths

- reflection losses due to imperfect interfaces
- higher losses for shorter wavelengths (stronger influence of interface regions)

high near normal incidence reflectivity (R > 60%) impossible at short wavelengths (λ < 6.6 nm)

ML coatings for short wavelengths

main issues for ML coatings at shorter wavelengths ($\lambda < 13.5$ nm):

1st: lower reflectance

typical experimental values for near normal incidence:

13.5 nm: R ≤ 70 %

6.7 nm: R ≤ 65 %

4.4 nm: $R \le 15 \%$

2.4 nm: $R \le 20 \%$

2nd: lower bandwidth

2nd issue: lower bandwidth at lower wavelengths

- strongly decreasing bandwidth (FWHM) of the ML coating for shorter wavelengths
- reason: higher number of required contributing interfaces

12 | **2018 International Workshop on EUV and Soft X-ray Sources,** Prague, Nov. 6, 2018

2nd issue: lower bandwidth at lower wavelengths

- **strongly decreased bandwidth** (FWHM) of the ML coating for shorter wavelengths
- consequences:
 - wavelength matching between mirrors more complicated
 - Iower integrated reflection
 - lower photon throughput
 (assuming broad plasma sources)

Experimental results

λ, nm	1.4	2.4	2.7	4.4	6.7	9.0	12.0	13.5
R, %	0.02	18.1	26.2	16.8	61.0	36.0	49.2	70.1
FWHM, nm	0.002	0.005	0.008	0.02	0.05	0.11	0.32	0.52

14 | 2018 International Workshop on EUV and Soft X-ray Sources, Prague, Nov. 6, 2018

Experimental results

λ, nm	1.4	2.4	2.7	4.4	6.7	9.0	12.0	13.5
R, %	0.02	18.1	26.2	16.8	61.0	36.0	49.2	70.1
FWHM, nm	0.002	0.005	0.008	0.02	0.05	0.11	0.32	0.52

15 | **2018 International Workshop on EUV and Soft X-ray Sources, Prague, Nov. 6, 2018**

- Multilayers for 1 nm ... 13.5 nm low reflectance, narrow bandwidth
- Narrow band sources meet narrow band multilayers
- Summary

Multilayer development for water window collector

Collector mirror – today: Reflectance mapping at λ = 2.478 nm

^{18 | 2018} International Workshop on EUV and Soft X-ray Sources, Prague, Nov. 6, 2018

2018 multilayer collector mirror: Wavelength at different positions

2018 multilayer collector mirror: EUV reflectance at different radii

Measured @PTB Berlin

- Multilayers for 1 nm ... 13.5 nm low reflectance, narrow bandwidth
- Narrow band sources meet narrow band multilayers
- Summary

- It's really hard to make high-reflective multilayers for wavelengths < 13.5 nm</p>
- Challenges: low reflectance, narrow bandwidth
- Please match source emission with multilayer absorption edges...

Still a very long and steep way to go ... but good to start now

KTH:

Hans Hertz and team

MBI: Holger Stiel and team

PTB Berlin:

Frank Scholze, Christian Laubis and team

Fraunhofer IOF:

Thomas Müller, Michael Scheler, Steffen Schulze

Thank you.

optiX fab.

www.optixfab.com