

Computer modeling of contamination and cleaning of EUV source optics

D.Astakhov^{1,2}, Y. Mankelevich³, D. Lisitsin¹, I. Popov², V. Krivtsun^{1,3}, V.Medvedev^{1,3}, A. Yakunin⁵, M. van Kampen⁵, P. van Zwol⁵, D.Labestki⁵

1 RnD-ISAN/EUV Labs, Sirenevy Bulevard Str. 1, Troitsk, Moscow, 108840, Russia

2 ISTEQ BV, High-Tech Campus 9, Eindhoven, The Netherlands

3 Institute for Spectroscopy RAS (ISAN), Fizicheskaya str. 5, Troitsk, Moscow 108840, Russia

4 Skobel'tsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory, Moscow 119991, Russia

5 ASML Netherlands B.V., De Run 6501, 5504DR Veldhoven, The Netherlands

Motivation for flow model

- Collector mirror need to be protected from tin debris
- Two main approaches:
 - Gas flow
 - Gas flow + B-field
- Goal: fast transient 3D model for flow + plasma conditions

Test configuration of LPP EUV source chamber

Target:

- Disk-like Sn target, mass equal to 30 μm droplet Laser:
- CO₂ main pulse
- 50 kHz operation frequency
- Tuned to ~250W to IF Gas protection:
- H₂ central flow
- H_2^{-} perimeter flow

Transient simulation for test configuration

ISTEO

Tin vapour reach collector. This simulation resulted in net removal of tin for the most part of the collector. (see slide 16)

Included physics

- . Gas heating due to ions stopping
- Spectrally resolved WUV radiation absorption in gas
 - Reflection from collector, EUV to IF
- H2 dissociation, recombination
- Multi component diffusion
- Particulate debris tracking
- . Set of surface & volume chemical reactions
 - . Tin deposition to surfaces
 - Tin cleaning by atomic hydrogen
- Disturbance of the tin droplets trajectory by flow field

Relevant time & space scales hierarchy **RnD ISAN** (1) Laser pulse & hot tin plasma Not resolved, • t < 500 ns, h < 1mm input data (2) lons stopping & radiation absorption Partially resolved, • $t \sim 1 \mu s$, $h \sim chamber size$ time scale integrated out (3) pulse-to-pulse repetition time • t ~ 10 µs (4) Transport processes in chamber • t > 10 ms, h ~ chamber size **Transient CFD** (5) Tin cleaning and deposition on the collector mirror • t > 1 hour

Model approach: CFD + plasma source

- EUV plasma characteristics
- Ions: angular energy distribution + charge states

RnD ISAN

Radiation: angular resolved spectrum

Plasma energy-mass-momentum source for CFD

- Particle tracing for ions
- . Ray tracing for radiation

Firing pattern

Computational fluid dynamics for multi-component gas •Mesh accounts for complex vessel geometry

Tin cleaning model

- . Tin cleaning agent
 - Atomic hydrogen vs ions
 - Ratio of ion and radical fluxes to the collector
 - Energy distribution of ion flux
- . Tin cleaning product and redeposition
 - SnH4 vs SnHx

Tin cleaning agent

Tin etching by H radicals and by H2 plasma was observed in many experiments:

- D. J. W. Klunder et al., SPIE 5715 (2005)
- O.V. Braginsky et al., J. Appl. Phys. 111 (2012)
 - \circ Sn is etched by atoms, probability is \rightarrow 0.5e-5 SnH4 per At.H
 - Sn may be etched also by ions, but with low overall contribution
 - Ion energy below 20eV.
- D. Ugur et al., Chemical Physics Letters 552, 122 (2012).
 - \circ Sn is etched by atoms, probability is \rightarrow 1e-5 SnH4 per At.H

••••

. . . .

- D. T. Elg et al Plasma Chem Plasma Process 38, 223 (2018).
 - \circ $\,$ Sn is effectively etched by H ions, limiting factor is energy

13 years

Tin cleaning agent

. . . .

. . . .

Tin etching by H radicals and by H2 plasma was observed in many experiments:

- D. J. W. Klunder et al., SPIE 5715 (2005)
- O.V. Braginsky et al., J. Appl. Phys. 111 (2012)
 - Sn is etched by atoms, probability is ~ 0.5e-5 per At.H
 - Sn may be etched also by ions, but with low overall contribution
 - Ion energy below 20eV.
- D. Ugur et al., Chemical Physics Letters 552, 122 (2012).
 - Sn is etched by atoms, probability is ~ 1e-5 per At.H
- D. T. Elg et al Plasma Chem Plasma Process 38, 223 (2018).
 - Sn is effectively etched by H ions, limiting factor is energy

O. V. Braginsky et al Journal of Applied Physics 111, 093304 (2012).

Sn cleaning by ions can be 10 -- 100x more efficient then by atoms, but still have small contribution in these experiments.

In order to translate to the EUV source chamber model:

- Expected ratio of ions to radicals fluxes
- Expected energy distribution function of the ion flux on the collector mirror

Estimation of ions to radical ratio for fluxes on the collector

Recombination of ions:

- H₂⁺, H₃⁺ lost due to two-body dissociative recombination in volume
- Sn⁺ⁿ to Sn⁺⁺ lost charge due to charge exchange with H2
- Sn⁺⁺ , Sn⁺ and H⁺ recombine via collisional radiative process

Recombination of H radicals:

- Atomic hydrogen recombination in volume is a very slow
- Recombination on the surface is a main sync

RnD ISAN

flux ratio Hions/(At.H + Hions)

Estimation energy distribution function (EDF) of the ion flux to the collector mirror

- EUV radiation forms plasma in front of the collector mirror
- Escape of fast photo electrons to the walls facilitate of plasma sheath formation
- . Ions are accelerated by the sheath potential
 - Once plasma near the mirror cools down
 → ion energy drops to near gas temperature level

Way to estimate -- Particle-in-Cell model for the EUV induced plasma applied locally near the collector mirror.

- Te cools down quickly to almost room temperature due to collisions with gas
- Most ions impact surface with very low energy.

IEDF over 1us, after 1us T_e is about 1000K

Tin cleaning products and redeposition

Common assumptions are:

- . Tin etching is Sn + 4H \rightarrow SnH₄
- . Redeposition is due to SnH_4
 - \circ SnH₄ decomposition is $\vec{E}UV$ or plasma induced
 - Thermal decomposition rate is too low (Tamaru 1956)
- . Direct measurements of SnH4 decomposition yields no effect

For other systems it is known that intermediate products can be much more reactive, e.g. CH_3 vs CH_4 ; SiH₃ vs SiH₄ etc.

- . Proposed set of reaction:
 - \circ Sn + xH \rightarrow SnHx
 - \circ SnHx + surface \rightarrow redeposition
 - $\circ \quad SnHx + H + M \rightarrow SnH4$

Tin cleaning model key experiment \rightarrow filament + lateral flow

experiment by Piter van Zwolle and Maarten van Kampen

Tin is pre-deposited on the sample
 initial profile is uniform

RnD ISAN

- Spatial distribution of tin over sample after exposure show measurable redeposition
 - The amount of redeposition is inconsistent with rate for SnH4 decomposition

1D analytical example: effect of tin redeposition

Assumption:

- Tin covers only part of the surface, PAC = S_covered/S_total
- fluxes of H and Sn are constant

- For H radicals and Sn the surface is a "sync term"
 - Sn deposits with $g \sim 1$
 - H radicals recombine with g ~ 1e-4 .. 0.1
- For SnHx the surface with tin is a source
 - SnHx is produced due to etching
 - Need to be transported any by diffusion and flow
 - Efficiently redeposits back on Sn

Balance between contamination and cleaning

• In 1D approximation, with diffusive transport only:

$$F_{Sn} = \gamma^{etch} \cdot F_H \cdot PAC \left(1 - \frac{\gamma_{SnH_x} \cdot PAC}{\gamma_{SnH_x} \cdot PAC + \frac{4D_{SnH_x}}{V_{SnH_x}L}} \right)$$

- For $PAC \rightarrow 0$ redeposition is not important
- For PAC ~ 1, redeposition is important, but the transport of SnHx limit cleaning rate
- Pressure effect → increase of pressure limits the transport, thus reduce cleaning rate

Modelling of collector contamination/cleaning

- Full model needs to define H, Sn, SnHx fluxes and deposited tin on all surfaces in the source chamber
- In order to provide quantitative results the amount of tin on the surface should be an output
 - Dirty surface → increase of H recombination.
 Steady model frequently results in all dirty collector.
- Model approach: transient fully coupled model for flow + source terms + species transport. Iteratively solved to prescribed tolerance.
 - \circ If flow is steady \rightarrow solve species transport only
 - If flow is unsteady, e.g. start of pulses \rightarrow can resolve with small time step.
- Internal scheme is unconditionally stable:
 - dt ~ 1e-6s to resolve pulses
 - \circ dt ~ 1e-4s to resolve flow restructure
 - \circ dt ~ 100s to resolve cleaning/deposition

test simulation results:

Net cleaning of the collector can be realised

Conclusions

- We have developed 3D transient model that couples energy and momentum input from tin plasma to the flow in the EUV source chamber
- The model takes into account tin deposition and cleaning from surfaces.
 Main etch product is assumed to be chemically active SnHx
- The model have ability to smoothly vary time step from pulse-to-pulse (~1e-6s) resolution to characteristic times (~100s) of cleaning processes
- The model can be used to optimize the chamber geometry, flow structure etc. for regime during source operation