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Motivation for flow model
● Collector mirror need to be 

protected from tin debris

● Two main approaches: 
− Gas flow
− Gas flow + B-field 

● Goal: fast transient 3D model 
for flow + plasma conditions



Test configuration of LPP EUV source chamber 
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Transient simulation for test configuration

Tin vapour reach collector. This simulation resulted in net removal of tin for the most part of the collector. (see slide 16) 



Included physics
● Gas heating due to ions stopping 
● Spectrally resolved  WUV radiation absorption in gas 

● Reflection from collector, EUV to IF
● H2 dissociation, recombination

● Multi component diffusion
● Particulate debris tracking 
● Set of surface & volume chemical reactions

● Tin deposition to surfaces
● Tin cleaning by atomic hydrogen

● Disturbance of the tin droplets trajectory by flow field



Relevant time & space scales hierarchy
(1) Laser pulse & hot tin plasma
● t <  500 ns, h < 1mm

(2) Ions stopping & radiation absorption 
● t ~ 1 μs, h ~ chamber size

(3) pulse-to-pulse repetition time
● t ~ 10 μs 

(4) Transport processes in chamber 
● t  > 10 ms, h ~ chamber size

(5) Tin cleaning and deposition on the collector mirror
● t > 1 hour

Not resolved, 
input data

Partially resolved,
time scale 
integrated out

Transient CFD



Model approach: CFD + plasma source
EUV plasma characteristics
● Ions: angular - energy distribution + charge states
● Radiation: angular resolved spectrum

Plasma energy-mass-momentum source for CFD
● Particle tracing for ions
● Ray tracing for radiation

Computational fluid dynamics for multi-component gas
•Mesh accounts for complex vessel geometry

Firing pattern



Tin cleaning model

● Tin cleaning agent 
○ Atomic hydrogen  vs  ions
○ Ratio of ion and radical fluxes to the collector
○ Energy distribution of ion flux

● Tin cleaning product and redeposition
○ SnH4 vs SnHx



Tin cleaning agent
Tin etching by H radicals and by H2 plasma was observed in many 
experiments: 

● D. J. W. Klunder et al., SPIE 5715 (2005)
   ….

● O.V. Braginsky et al., J. Appl. Phys. 111 (2012) 
○ Sn is etched by atoms, probability is → 0.5e-5 SnH4 per At.H
○ Sn may be etched also by ions, but with low overall contribution
○ Ion energy below 20eV.

● D. Ugur et al., Chemical Physics Letters 552, 122 (2012).
○ Sn is etched by atoms, probability is → 1e-5 SnH4 per At.H

  ….

● D. T. Elg et al Plasma Chem Plasma Process 38, 223 (2018).
○ Sn is effectively etched by H ions, limiting factor is energy

13 years



Tin cleaning agent

O. V. Braginsky et al Journal of Applied Physics 111, 093304 (2012).
Tin etching by H radicals and by H2 plasma was observed in many 
experiments: 

● D. J. W. Klunder et al., SPIE 5715 (2005)
   ….

● O.V. Braginsky et al., J. Appl. Phys. 111 (2012) 
○ Sn is etched by atoms, probability is ~ 0.5e-5 per At.H
○ Sn may be etched also by ions, but with low overall contribution
○ Ion energy below 20eV.

● D. Ugur et al., Chemical Physics Letters 552, 122 (2012).
○ Sn is etched by atoms, probability is ~ 1e-5 per At.H

  ….

● D. T. Elg et al Plasma Chem Plasma Process 38, 223 (2018).
○ Sn is effectively etched by H ions, limiting factor is energy

Sn cleaning by ions can be 10 -- 100x more 
efficient then by atoms, but still have small 
contribution in these experiments.

In order to translate to the EUV source chamber model:
● Expected ratio of ions to radicals fluxes
● Expected energy distribution function of the ion flux on the 

collector mirror



Estimation of ions to radical ratio for fluxes on the collector
Recombination of ions:
• H2

+, H3
+   lost due to two-body dissociative recombination  in volume

• Sn+n to Sn++ lost charge due to charge exchange with H2
• Sn++ , Sn+  and H+ recombine via collisional radiative process

Recombination of H radicals:
• Atomic hydrogen recombination in volume is a very slow
• Recombination on the surface is a main sync 

flux ratio Hions/(At.H + Hions)



Estimation energy distribution function (EDF) of the ion flux to the collector mirror

● EUV radiation forms plasma in front of the collector 
mirror

● Escape of fast photo electrons to the walls facilitate 
of plasma sheath formation 

● Ions are accelerated by the sheath potential
○ Once plasma near the mirror cools down 

→ ion energy drops to near gas temperature 
level

Way to estimate -- Particle-in-Cell model for the EUV 
induced plasma applied locally near the collector mirror.

● Te cools down quickly to almost room temperature 
due to collisions with gas

● Most ions impact surface with very low energy. 

Most ions are cold → At.H provides most of tin cleaning

IEDF over 1us, after 1us T_e is about 1000K



Tin cleaning products and redeposition
Common assumptions are:

● Tin etching is Sn + 4H → SnH4
● Redeposition is due to SnH4 

○ SnH4 decomposition is EUV or plasma induced
○ Thermal decomposition rate is too low (Tamaru 1956)

● Direct measurements of SnH4 decomposition yields no effect

For other systems it is known that intermediate products can be much more 
reactive, e.g. CH3 vs CH4; SiH3 vs SiH4 etc.

● Proposed set of reaction:
○ Sn + xH → SnHx
○ SnHx + surface → redeposition
○ SnHx + H + M → SnH4



Tin cleaning model key experiment → filament + lateral flow

● Tin is pre-deposited on the sample
○ initial profile is uniform

● Spatial distribution of tin over sample 
after exposure show measurable 
redeposition
○ The amount of redeposition is 

inconsistent with rate for SnH4 
decomposition

H2 flow

hot filament

tin covered sample

experiment by Piter van Zwolle and Maarten van Kampen  



1D analytical example: effect of tin redeposition

At.H, Sn

Z

SnHx
● For H radicals and Sn the surface is a “sync term”

○ Sn deposits with  g ~ 1
○ H radicals recombine with g ~ 1e-4 .. 0.1

● For SnHx the surface with tin is a source
○ SnHx is produced due to etching 
○ Need to be transported any by diffusion and flow
○ Efficiently redeposits back on Sn

Balance between contamination and cleaning
● In 1D approximation, with diffusive transport only:

● For PAC → 0 redeposition is not important
● For PAC ~ 1,  redeposition is important, but the transport of 

SnHx limit cleaning rate
● Pressure effect → increase of pressure limits the transport, 

thus reduce cleaning rate

Assumption:
● Tin covers only part of the surface,

PAC = S_covered/S_total
● fluxes of H and Sn are constant

L



Modelling of collector contamination/cleaning
● Full model needs to define H, Sn, SnHx fluxes and 

deposited tin on all surfaces in the source chamber

● In order to provide quantitative results the amount of 
tin on the surface should be an output
○ Dirty surface → increase of H recombination. 

Steady model frequently results in all dirty 
collector.

● Model approach: transient fully coupled model for 
flow + source terms + species transport. Iteratively 
solved to prescribed tolerance.
○ If flow is steady → solve species transport only
○ If flow is unsteady, e.g. start of pulses → can 

resolve with small time step. 

● Internal scheme is unconditionally stable:
○ dt ~ 1e-6s to resolve pulses
○ dt ~ 1e-4s to resolve flow restructure
○ dt ~ 100s to resolve cleaning/deposition 

test simulation results:

Net cleaning of the collector can be realised



Conclusions

• We have developed 3D transient model that couples energy and
momentum input from tin plasma to the flow in the EUV source
chamber 

• The model takes into account tin deposition and cleaning from surfaces. 
Main etch product is assumed to be chemically active SnHx

• The model have ability to smoothly vary time step from pulse-to-pulse (~1e-6s) 
resolution to characteristic times (~100s) of cleaning processes 

• The model can be used to optimize the chamber geometry, flow
structure etc. for regime during source operation


