Optics for EUV Lithography

Dr. Sascha Migura Carl Zeiss SMT GmbH, Germany June 12th, 2019, Berkeley, CA, USA

The company founders

Ernst Abbe (1840–1905)

Carl Zeiss (1816–1888)

Their mission

- Offering customers extreme precision and maximum quality
- Enabling cutting-edge applications
- Social responsibility

Abbe's insight (1873) enabled the production of microscopes by optical designs.

k₁ is process factor λ is wavelength **NA** is numerical aperture

Ernst Abbe (1840 - 1905)

Moore's Law drives the requirements on the optical system.

Resolution

The early years Telefunken

1968

IC Printer Setup from ZEISS for Telefunken Resolution ~15µm

The early years David Mann / GCA

1975

Mann 4800 with optics from ZEISS Resolution: 1.4µm

Beginning: Collaborations and funding in Europe First EUV Workshop at ZEISS held on November 13th/14th, 1995.

ZEINN

In search of the Next Generation Lithography (NGL) Optics seen as issue #1 for EUV.

From November 1997 to August 2001, Optics matured from "Potential Showstopper" to "Solution Anticipated" in SEMATECH's NGL workshop survey.

ZEINS

Starlith[®] 3400 The solution for volume production with EUV.

Starlith[®] 3400 Optical Column: Low-k1 EUV Optics enabling 13nm single-shot resolution.

ZEISS

Starlith[®] 3400 The solution for volume production: Optical column.

Starlith[®] 3400: Projection Optics Improved aberrations consistently achieved in serial production.

ZEISS inhouse EUV qualification

Starlith[®] 3400: Projection Optics The optics delivers excellent imaging.

Source: ASML

Starlith[®] 3400: Projection Optics The optics transports a Terapixel of information in every shot.

Assuming a pixel size of 13nm x 13nm...

pixel in y = $33mm / 13nm = 2.5 \cdot 10^{6}$

...results in $5.0 \cdot 10^{12}$ pixels per field.

That is 2.4 million times more pixels compared to Full HDTV.

Starlith[®] 3400: Projection Optics Displaying the information, a TV screen of 780m x 1370m is required.

Intel Core i7 layout

NXE:3400 EUV ramp at customers has started.

Source: ASML

More than 4.5 Million wafers run since 2011.

ZEISS

4.5M

NXE:3400 40 systems now in the field.

<u>ا ک</u>

Power

100

perform

Dose

Imaging

Dose

Starlith[®] 3400: Projection Optics Mirror manufacturing

Starlith[®] 3400: Projection Optics Figure control on atomic level

Computer Controlled Polishing

Ion Beam Figuring

Figuring process

Highly accurate metrology

Interferometric Surface Metrology

Polishing technologies and metrology closing the loop

Starlith[®] 3400: Projection Optics Critical quality parameters for polishing of optical surfaces

21

Starlith[®] 3400: Projection Optics Mirror fabrication: The sizes and challenges get bigger with each generation.

	MET	ADT	3100	3300/3400	
Photos show relative mirror size					
Figure [pm rms]	350	250	140	<50	aberrations
MSFR [pm rms]	250	200	130	<80	flare
HSFR [pm rms]	300	250	150	<100	light loss

Starlith[®] 3400: Projection Optics What does 50pm surface deviation mean?

Correspond to heights of 100µm in Germany.

Starlith[®] 3400: Projection Optics Coating technology: The multilayer coating defines EUV.

Reflectivity	>67%, high bandwidth
Layer thickness control	<0.2%
Lateral uniformity	<0.2%
Coating stress	100 MPa
Thermal Stability	200°C

Starlith[®] 3400: Projection Optics Mirror tilts controlled with sub nrad accuracy to enable sub nm image placement.

Test module for EUV mirror positioning

EUV mirrors can control the position of an image on the moon with less than 20cm accuracy 384 400 KM

Starlith[®] 3400: Highly flexible illuminator Allows lossless changes of settings and the optimization of image contrast.

Examples of additional illuminator settings of the NXE:3400

Field Facet Mirror

ZEINS

Starlith[®] 3400 productivity Robust transmission trend supports increased throughput.

ZEISS inhouse EUV qualification

AIMS[™] EUV The EUV mask is a special mirror in the optical column.

design scheme

AIMS[™] EUV Challenges for EUV mask making addressed by ZEISS.

AIMS[™] EUV Sees already in the mask shop what the wafer will see.

29

AIMS[™] EUV Core functionality at a glance

Equivalent image generation as on scanner

<u>34X0</u> (PFR≥20%)

- Illumination setting available for optimized scanner matching
- Equivalent angular space selection (CRAO)

Same information collected from the mask to create aerial image

AIMS[™] EUV Precise quantification of aerial image impact for all kinds of defects.

E. Verduijn et al. 2017, 'Printability and actinic AIMS review of programmed mask blank defects'

- Suitable also for phase defects
- Scanner matching: λ, NA, sigma, CRA,...

Capelli R. et al. 2018, "AIMSTM EUV first insertion into the back end of the line of a mask shop: a crucial step enabling EUV production"

- Precise quantification
- Reliable OK/NOK decision

Capelli R. et al. 2018, "Aerial image based metrology of EUV masks: recent achievements, status and outlook for the AIMSTM EUV platform"

 "Clean" image of mask contribution

ZEISS

High-NA EUV: Starlith[®] **5000** The optical system for the ultimate printing machine with NA = 0.55

Ernst Abbe (1840–1905)

NA	0.25	0.33		0.45	0.50	0.55
Resolution @ k ₁ =0.3 single exposure / nm	16.2	12.3	•••	9.0	8.1	7.4

High-NA EUV: Starlith[®] 5000 The optical system for the ultimate printing machine with NA = 0.55

High-NA EUV: Starlith[®] 5000 The optical system for the ultimate printing machine with NA = 0.55

design scheme

High-NA EUV: Starlith[®] 5000 Fields and light cones at reticle and wafer are connected via MAG (magnification).

ZEISS

High-NA EUV: Starlith[®] 5000 Increasing NA, light cones @ reticle start to overlap.

High-NA EUV: Starlith[®] 5000 To separate light cones again, CRAO must be increased.

High-NA EUV: Starlith[®] 5000 Absorber shadowing @reticle is angular dependent.

High-NA EUV: Starlith[®] 5000 Shadowing for high CRAO leads to telecentricity errors and loss of image contrast.

ZEISS

High-NA EUV: Starlith[®] 5000 Due to shadowing, a system with high CRAO does not resolve even 11 nm hp.

High-NA EUV: Starlith[®] 5000 The only way to decrease angular spread @reticle is to increase MAG.

High-NA EUV: Starlith[®] 5000 Changing MAG is changing field sizes: Same mask leads to Quarter Field...

High-NA EUV: Starlith[®] 5000 ...or keeping Full Field requires a large mask.

High-NA EUV: Starlith[®] 5000 Reducing angles by increasing MAG only in the direction that matters.

ZEISS

High-NA EUV: Starlith[®] 5000 Design enables sub 8 nm resolution imaging using standard multilayer @ reticle.

ZEISS

High-NA EUV: Starlith[®] 5000 Looking at the movies...

Reality

Image by Bernd Geh

Film

Cinema Widescreen

Record with a conventional lens Project with a conventional lens

Same aspect ratio, same angles. BUT: Bad usage of space, lower resolution High-NA EUV: Starlith[®] 5000 ...where anamorphic cinematographic lenses are used...

Cinema Widescreen

Reality

Film

Record with an Anamorphic lens* Project with an **Anamorphic** lens

Anamorphic MAG vertically "stretches" image for good usage of space, lower angles, better resolution

*e.g. a ZEISS Master Anamorphic Lens

High-NA EUV: Starlith[®] 5000 ...to reduce angles at the mask and increase resolution in lithography.

Film Reality **Cinema Widescreen** 50 "Anamorphic" Anamorphic Mask writing Projection Wafer Image **Electronics** Design Mask

Same image on wafer, but much lower angles in stretching direction.

High-NA EUV: Starlith[®] 5000 AIMS[™] EUV for mask 3D effects qualification

benefits

Mask shop

- equivalent image generation as on scanner NXE:33X0-34X0 (illumination, NA)
- same diffraction orders collected by POB \rightarrow relevant information only

Provides the means for a full qualification of mask 3D effects, and their dependence on process parameters.

High-NA EUV: Starlith[®] 5000 The design has been finalized.

High-NA EUV: Starlith[®] 5000 Big optical system with very large mirrors and extreme aspheres.

> Large overall size of optical system

→ Challenge to optics technology and manufacturing

high transmission

High-NA EUV: Starlith[®] 5000 Single exposure resolution power optics for the EXE:5000 scanner.

The EXE:5000 scanner will be the ultimate lowest cost/pixel printing machine.

ZEISS

High-NA EUV: Starlith[®] 5000 AIMS[™] EUV solution for EXE:5000 High-NA emulation.

AIMS[™] EUV for High-NA will be based on existing platform to guarantee forward and backward compatibility.

High-NA EUV: Starlith[®] 5000 Scanner layout for EXE:5000 compared to NXE:3400.

Source: ASML

High-NA EUV: Starlith[®] 5000 Comparison of aspherical surfaces in different optical instruments.

ZEISS

High-NA EUV: Starlith[®] 5000 Metrology vessel transport and integration at ZEISS in Oberkochen, Germany.

ZEISS

High-NA EUV: Starlith[®] 5000 Accuracy of mirror metrology is key for imaging quality.

EUV High-NA Integration

EUV High-NA Coating

EUV High-NA Metrology

ZEISS

R

EUV High-NA Optics

Conclusions

- TODAY The Starlith[®] 3400 for the NXE:3400B
 - ✓ Multiple systems shipped.
 - ✓ ZEISS is fully committed and ready for high volume ramp-up.

- TOMORROW High-NA with the Starlith[®] 5000 for the EXE:5000
 - Enables further shrink for the semiconductor industry to continue Moore's Law.
 - Design has been finalized; mirror production has started.
 - ✓ Fast infrastructure and equipment build-up at ZEISS.

EUVL Teams at ASML & ZEISS and at our partners

European Commission Federal Ministry of Education and Research (Germany) for funding of the projects E450LMDAP (621280), SeNaTe (662338,16ESE0036K), TAKE5 (692522,16ESE0072K), TAKEMI5 (737479) and TAPES3 (783247,16ESE0287K) within the framework of the ENIAC and ECSEL JU programs

