

Enabling the Semiconductor Roadmap from a Multi-Angled Approach

June 13th, 2019 Steven Welch Senior Director of Strategy, Advanced Product and Technology Development, Applied Materials

Introduction

Steven Welch is currently Senior Director of Strategy for Applied Materials' Advanced Product and Technology Development group. In this role, he is responsible for identifying and synthesizing key inflections in the longer-term Semiconductor technology roadmap, as well as enabling disruptive technology development and business growth strategies to intercept these emerging opportunities. With over 20 years in the industry, Steven started his career in 1998 as a photolithography engineer at IBM's Storage Systems Division in San Jose, California. Since then, he has held marketing and strategy leadership positions in KLA-Tencor's wafer inspection, Applied Materials' etch, and ASML's holistic lithography businesses. Steven holds a B.S. in Chemistry from Harvey Mudd College and MA & MBA degrees from the University of Pennsylvania's Wharton School of Business.

NDA J

Semiconductor Scaling and Enablers

Logic Scaling Advancements

Memory Advancements to Scale A.I. Big Data

NDA J

Semiconductor Scaling and Enablers

Logic Scaling Advancements

Memory Advancements to Scale A.I. Big Data

Industry's Old Playbook...

ENABLED BY

"Classic" 2D feature shrinking

materials engineering to drive power and performance

https://wccftech.com/apple-a12x-10-billion-transistors-performance/

In the Future...

ENABLED BY

New architectures

New structures / 3D

New materials

New ways to shrink

Advanced packaging

... New industry playbook needed to drive PPAC

Moore's Law beyond 5nm Node?

Adapted from Nature Electronics, V1, August' 2018, 442–450

APPLIED

MATERIALS

NDA J

Semiconductor Scaling and Enablers

Logic Scaling Advancements

Memory Advancements to Scale A.I. Big Data

CMOS Scaling and Enablers

Why *Horizontal*-GAA -> Evolutional Change

Vertically stackable channel (NW/NS) for increased current per area Similar structures & flows: hGAA vs. FinFET

hGAA CMOS Initial Demonstrations

Source: IMEC/ Applied Materials, IEDM 2018

Functional CMOS demonstrated – getting ready for ≤3nm-node

hGAA CMOS – Key Challenges

Source: AMAT, SMC Korea 2019 conference

Parasitic capacitance reduction between sheets

Metal-gate Vt tuning in narrow gaps

IBM, IEDM 2017

Beyond Conventional CMOS (≤2nm)

Selective Processes – Enabling New Ways to Build Chips

Scaling Opportunities in the Back-end-of-line Interconnect

Source: AMAT, IEDM 2018 conference

BEOL Cu wire resistance (R) increasing at smaller geometries due to:

- Inherent bulk conductor resistivity characteristics
- Trade-off fill volume of highconducting vs. cladding materials
- Scattering at surfaces and grain boundaries

...resulting in slower performance and higher power consumption

Materials-Engineering Solutions:

- ▶ New materials (lowest R at CD)
- Full-volume metal fills
- Interface management

Copper Extension Scenarios

Co-optimization of ALD barriers with thinner liners and new fill technology is key to maximize conductor volume (low line R) and minimize interface resistance (low via R)

Source: AMAT, IEDM 2018 conference

New Metals for Resistance Scaling

NDA J

Semiconductor Scaling and Enablers

Logic Scaling Advancements

Memory Advancements to Scale A.I. Big Data

Emerging Memories for Pervasive Data and Compute

APPLIED MATERIALS

Source: <u>http://www.imec.be</u> from techspot.com (February 21, 2019)

Architectural Advancements Leveraging Memory & Design

Significant investments in memory to enable better bit scaling and performance

3D Architectures

3D architectures extend memory densities

Source: Intel 2015

3D Architectures

Materials and Interfaces

- Complex stacks with multiple exotic materials are required to enable new memories
- Deposition, etch and CMP are critical process development areas

Deposition

Etch

Planarization

Example of Elements to Enable New Memories

PCM Selector

- M-K. Lee, IEDM 2012
- G.H. Kim, APL 2012
- L. Zhang, IEDM 2014

STT-MRAM

K. Ando, JAP 2014

FE-FET

- X. Tian, APL 2018
- A. Pal, APL 2017

CBRAM

 Adesto Technologies, IEEE 2013 talk

DRAM and Packaging

Packaging enables higher performance to support more complex workloads

Nvdia V100 source: techreport.com 2017

Beyond Chip Scaling: Advanced Packaging

DRAM ON PCB to STACKED DRAM IN PACKAGE

HETEROGENEOUS INTEGRATION

3x Logic ←→ DRAM bandwidth performance

50% Power savings per bit

SOURCES: Intel, GLOBALFOUNDRIES System on Chip to System on Package

Integration of chiplets provides **time, cost** and **yield** benefits

Connecting chips together in new ways using advanced packaging

Distributed Cache

1T, 1 STT-MRAM

Source: AMAT

Multiple MRAM Milestone Announcements

		S		intel	SAMSUNG		SAMSUNG
 8/2017 Everspin announced sampling of the world's first 1Gb MRAM product 9/2017 Global Foundries announced availability of embedded MRAM on leading 22FDX FD- SOI platform 	7/2018 TSMC "Over 50 customers and 140 tapeout in N22ULP, spanning many application areas connectivity, digital TV/STB, application	11/2018 Spin Memory & Applied Materials commercial agreement to create a comprehensive embedded MRAM solution	12/2018 Gyrfalcon Technology announced the commercial availability of its AI ASIC that include TSMC's 22nm eMRAM	12/201 Intel described the first FinFET- based MRAM technology (22nm) is production ready	8 IEDM conf Samsung showed MRAM design technology co- optimization for hardware neural networks	erence Global Foundries showed 22nm embedded 40 Mb MRAM for low-power automotive MCU application	3/2019 Samsung shipped the first 28nm eMRAM

MRAM Benefits

MRAM Capability Demonstrated by Optimization of Complex Stack

Top electrode
MgO capping
Free layer (CoFeB based)
MgO barrier
Reference layer
Ru
Pinned layer
Seed
Bottom electrode

Sources: Applied Materials

 Systematic Optimization of 1 Gbit Perpendicular Magnetic Tunnel Junction Arrays for

 IEDM, 2015
 28 nm Embedded STT- MRAM and Beyond

 C. Park^{1,a}, J.J. Kan¹, C. Ching² Hassan²
 Systematic Validation of 2x nm Diameter Perpendicular MTJ Arrays and MgO

 Barrier for Sub-10 nm Embedded STT-MRAM with Practically Unlimited Endurance
 J.J. Kan^{1,a}, C. Park¹, C. Ching², J. Ahn², L. Xue², R. Wang², A. Kontos², S. Liang², M. Bangar², H.Chen², S.

Hassan², S. Kim¹, M. Pakala^{2,b}, and S. H. Kang¹

IEDM, 2016

¹Qualcomm Technologies, Inc., San Diego, California 92121, USA. E-mail: ^ajkan@qti.qualcomm.com

endra_pakala@amat.com

Low RA Magnetic Tunnel Junction Arrays in Conjunction with Low Switching Current and High Breakdown Voltage for STT-MRAM at 10 nm and Beyond PENDICULAR MTJ DEVICES

C. Park^{1,a}, H. Lee¹, C. Chiu ¹ Corporate Research and Development, Qualcomm ²Silicon Systems Group, App

¹Oualco

²Silicon Systems

"Tel: 1-858-658-1890, "ch

VLSI. 2018

Abstracts

The scaling of STT-MRAM for deeply scaled nod 10 nm CMOS) requires low resistance-area-pr magnetic tunnel junctions (MTJs) to contair voltage (V_c) and to assure high endurance. In various reports, we demonstrate systematic eng low-RA MTJs without trading off key device at remarkably, with higher barrier reliability. The MT an ultra-thin synthetic antiferromagnetic layer (tf Co/Pt pseudo-alloy pinned layer. By reducing R4 5 $\Omega \mu m^2$, significantly reduced V_c and reliable sw ns have been achieved. Furthermore, the breakdd (V_{BD}) has been improved. The results sugge tunability of MTJ is extended to sub-10 nm CMC performance and high-reliability MRAM. Process Optimization of Perpendicular Magnetic Tunnel Junction Arrays for Last-Level Cache beyond 7 nm Node

Lin Xue^a, Chi Ching, Alex Kontos, Jaesoo Ahn, Xiaodong Wang, Renu Whig, Hsin-wei Tseng, James Howarth, Sajjad Hassan, Hao Chen, Mangesh Bangar, Shurong Liang, Rongjun Wang, Mahendra Pakala^b

Applied Materials, Inc., Sunnyvale, California 94085, USA ^a Lin Xue@amat.com, ^b Mahendra Pakala@amat.com

Abstract

This paper demonstrates systematic process optimization of perpendicular magnetic tunnel junction (pMTJ) by hardware, unit-process, and material stack design. TMR of 200% at RA 5 Ohm μ m², H_{SAF} ~ 8 kOe, and 10-time tunability of Hc were achieved at the film level. After patterning, 10⁻⁶ write error rate was reached at 0.4 pJ, V_{BD} was as high as 1600 mV at 20 ns pulse width, and excellent device stability against 400°C BEOL baking was demonstrated. The device performance along with the process capability to make MTJ array at 88 nm pitch provides opportunities for LLC applications.

Introduction STT-MRAM has become one of the leading new memory

technologies as it demonstrated excellent scalability and low

200% was achieved at RA of 5 Ohm·µm², relevant to LLC applications. TMR ~ 100% was measured at RA ~ 1 Ohm·µm². The results showed excellent RA scalability of MTJ films. The magnetic properties of the MTJ stack were improved by testing different materials for capping and SAF coupling. Fig. 4 shows films of four different materials of capping with Hc from 8 to 80 Oe. No obvious change of RA or TMR was measured. High SAF coupling (H_{SAF}) of the MTJ film allows low write error rate. By optimizing SAF coupling material as well as magnetic material thickness within the reference layer, H_{SAF} increased from 4 to 8 kOe (Fig. 5). **Device and Array Performance**

Although lower polarization at lower RA limits TMR, TMR of

Roadmap for additional density and performance scaling in development

Digital to Analog Computing

Analog vector-matrix multiplier: reduced complexity and power; will require further advances in process variability

12x12 array, Bell Labs 1986 cited by LeCuin, ISSCC 2019

CAS, IEDM 2017

Tsinghua, IEDM 2017

APPLIED MATERIALS

Emerging Memory for Machine Learning Accelerators

1. Digital Accelerator SRAM → MRAM available in Foundry

"The 2802M ASIC has 40MB of eMRAM memory, which can support large AI models or multiple AI models within a single chip." – gyrfalcontech.ai 2019

• MRAM can enable area benefit at lower power versus traditional distributed SRAM techniques

2. Analog Accelerator

eFlash → RERAM, FEFET, PCRAM in Development

Weights: Conductance of NVM

Matrix multiplication in hardware (Ohms, Kirchhoff law)

"1,000 to 10,000 better speed-energy efficiency product than digital ASICs" - HPE, ACM 2016

New analog memories, once performance at scale is robust, can enable additional performance boosts @ density and new ways of compute

PPAC Optimization Beyond the Chip

