Measurement of electron blur

Oleg Kostko

Chemical Sciences Division, LBNL

Jonathan Ma, Patrick Naulleau

CRXO, LBNL

What is image blur

Blur due to imaging

What is blur

- Only **10 30 %** of EUV photons will be absorbed by 30 nm resist film
- Remaining **70 90 %** will be absorbed by substrate/underlayer

Importance of secondary electrons

Seah and Dench, Surf. Interface Anal. 1, 2 (1979)

Direct determination of electron blur

Indirect determination of electron blur

Oleg Kostko

Electron attenuation length

Why X-rays?

Material	Cross-section 92eV	Cross-section 193eV
Silicon	0.3 Mb	3.6 Mb
Carbon	0.6 Mb	0.11 Mb

Carbon (polymer) is almost transparent for X-rays, therefore electrons are generated by substrate

Measurement using gold underlayer

Au 4f KE = 93 eV

Measurement directly from silicon wafer

EAL can be thickness dependent

Hino, Sato, Inokuchi, J. Chem. Phys. 67 (1977) 4139

More advanced experiment

Conclusions

- Described sources of electron blur
- Importance of low kinetic energy secondary electrons
- Direct and indirect ways to measure electron blur
- Electron attenuation length (EAL)
- Demonstrated first results of EAL determination

Thank you for attention