Atoosa Dejkameh, I. Mochi, H. Kim, U. Locans, R. Nebling and Y. Ekinci

Effect of beam-stop on EUV Ptychography reconstructions
In ptychography, we collect a stack of diffraction patterns by moving the object relative to the illumination beam.
Beam stop, a method to avoid the bleeding effect.

Bleeding effect in the images collected by the camera due to limited well depth.

Exposure time: 50 ms 1000 ms 5000 ms 20000 ms

A beam stop blocks the zeroth order and makes it possible to collect intense higher orders.

Problem: The information is lost in the blocked region.
What is the critical size of the beam stop?

We use **pixel masking** to instruct the algorithm to ignore the values at the blocked location and try to retrieve the values by taking advantage of the oversampling.
What is the critical size of the beam stop?

We use pixel masking to instruct the algorithm to ignore the values at the blocked location and try to retrieve the values by taking advantage of the oversampling.

* The beam stop size corresponding to the size of the illumination numerical aperture is marked by the red dotted circle.
Analysis:

Mean square error plot*

NA_{ill}

MTF analysis

* "Actinic inspection of EUV reticles with arbitrary pattern design", I. Mochi et al, Proc. SPIE 2017, 1045007
Conclusion & future work

• In a ptychographic imaging system, the beam-stop size should not exceed the illumination numerical aperture.
• When the beam stop size is larger than illumination numerical aperture, the reconstruction error increases and the contrast drops.

We plan to:
 o Investigate the effect of data loss in other regions of the Fourier domain
 o Investigate the effect of detector defective pixels.