Linearized scatterometry for detecting EUV phase deviations

Stuart Sherwin[a], Laura Waller[a], Andrew Neureuther[a], Patrick Naulleau[b]

[a]: UC Berkeley, Dept. of Electrical Engineering and Computer Science

[b]: Lawrence Berkeley National Lab, Center for X-Ray Optics
The need for actinic phase scatterometry

• Actinic phase metrology needed, scatterometry uniquely suited
 • Must be actinic to be sensitive to phase @13.5nm
 • Must measure patterned area to capture M3D/thick-object scattering
 • Scatterometry hardware much simpler than actinic phase imaging
Computational approach is a challenge

- Scatterometry follows RCWA (Rigorous Coupled-Wave Analysis)
 - Computation for ~160 illumination conditions takes a few minutes
 - Numerical optimization would take hours/days with no guarantee of success
 - Local minimum and/or flaws in parametrization

Measured, y

RCWA, y_0
Linearization greatly simplifies things

• Predict deviations in phase from a linearized approximation
 • Nominal RCWA already very close to measurement: $\delta y = y - y_0$
 • Random perturbations of nominal RCWA to learn linearization: $\Delta \phi \approx w^* \delta y$

• One-time computation, then fast + guaranteed solution at runtime

Deviation, δy Learned filter, w
How to solve for the filter w?

• Goal: solve for w such that $\Delta \phi \approx w^* \delta y$

• Solution: simulate N random perturbations of nominal RCWA
 • Randomly perturb model parameters like layer thickness and mask CD
 • Deviation of scatterometry measurement ΔY (N-column matrix)
 • Deviation of in-image phase at nominal illumination $\Delta \Phi$ (N-element vector)
 • Numerically stable solution for w: $w = (\Delta Y^* \Delta Y + \alpha I)^{-1} \Delta Y^* \Delta \Phi$
 • Leave-one-out cross validation to prevent overfitting

• At runtime: estimate change in pattern phase with linear projection
RCWA can learn to interpret scattering data

- Simulated performance on 8 different features
- $w^* \delta y$ correlation with true phase compared to raw magnitude $||\delta y||$
Nominal scattering signal from RCWA

Nominal signal, y_0

$p=560\text{nm}, D=25\%$

Diffraction orders
Measured signal

Measured signal, y

$p = 560\text{nm}, D = 25\%$

$\theta = 2^\circ$

$\theta = 4^\circ$

$\theta = 6^\circ$

$\theta = 8^\circ$

Diffraction orders

-3

-2

-1

0

1

2

3

13\text{nm} \quad \lambda \quad 14\text{nm} \quad \lambda \quad \lambda \quad \lambda$
Deviation of measurement from nominal

Deviation signal, δy

$p = 560 \text{nm}, D = 25\%$

$\theta = 2^\circ$

$\theta = 4^\circ$

$\theta = 6^\circ$

$\theta = 8^\circ$

Diffraction orders

13nm λ 14nm λ λ λ
Weights learned from RCWA

Optimized weights, w

$p = 560\text{nm}, D = 25\%$

$\theta = 2^\circ, \theta = 4^\circ, \theta = 6^\circ, \theta = 8^\circ$

Diffraction orders

$\lambda = 13\text{nm}, \lambda = 14\text{nm}, \lambda$
D=50%: nominal y_0 and learned w

$p=160$ $p=280$ $p=440$

y_0

w
D=33%: nominal y_0 and learned w

$p=240$ $p=420$ $p=660$

y_0 w
D=25%: nominal y_0 and learned w

$p=320$

$p=560$