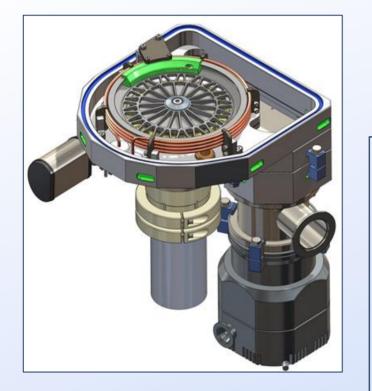
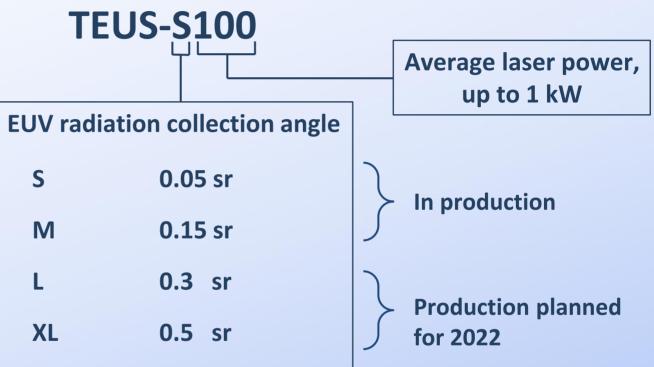

TEUS - high-brightness EUV LPP light source based on fast rotating target: product overview

and specifications

2021 EUVL Supplier Showcase

TEUS light source: clean EUV (13.5 nm) photon production


Innovative LPP target + conventional debris mitigation techniques → ultimate solution for clean photon EUV source


Advantages of fast rotating liquid metal LPP target.

Fast rotation target provides :

- ★ Redirection of droplet debris away from input (laser) and output (EUV) windows
- **★** Undisturbed target surface for a high rep rate laser system (up to 1 MHz)
- ★ Minimum synchronisation required as the target is continuous
- **★** Excellent inherent source spatial stability

TEUS product line

→ TEUS S(M)100, S(M)200, S(M)400 production started in 2020

→ 3 source modifications delivered to customers

TEUS sources in production

General characteristics and facility requirements			
Dimensions (LxWxH)	1.4x1x1.2 m ³		
Electrical power	6.5-10.5 kW		
Flow rate of running water	10-25 L/min		
Ultra high purity Ar consumption	1e-1 slpm		
Weight, including laser components	770 kg		
Room cleanliness class	ISO7		

TEUS source product specifications

Laser average power	100 W	200 W	400 W	
Maximum pulse repetition rate	25 kHz	50 kHz	100 kHz	
Solid angle of collectable EUV power (S/M)	0.05 sr / 0.15 sr			
Conversion efficiency in-band (13.5 nm±1%) radiation	2%@2π			
In-band EUV (13.5nm±1%) flux inside collection angle with account for debris mitigation system (S/M)	8.5 mW / 25.5 mW	17 mW / 51 mW	25.5 mW / 76.5 mW	
In-band EUV (13.5nm±1%) brightness 'on plasma' with account for debris mitigation system (S/M)	90 W/mm²∙sr	180 W/mm²∙sr	360 W/mm²∙sr	
Plasma size*	60 μm			
Intensity stability**	3% RMS			

*: defined as the diameter of the plasma intensity profile at 1/e² level

**: pulse-to-pulse intensity stability over 60 seconds, mainly determined by the stability of the laser

For full-band (13.5nm $\pm 2\%$) conversion efficiency is $4\%@2\pi$, giving double brightness and double the collected EUV power.

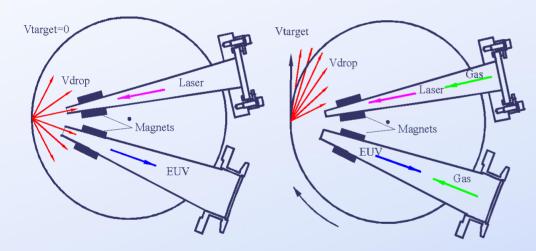
TEUS source product specifications

Laser average power	100 W	200 W	400 W
First mirror lifetime without using a CNT membrane filter in 24/7 mode of operation*	>12 month	>6 month	>3 month
First-mirror lifetime using a CNT membrane filter in 24/7 mode of operation*	>24 month	>12 month	>6 month
Exploitation time before maintenance	8 months	4 months	2 months
Uptime in 24/7 mode of operation**	4 months	2 months	1 month

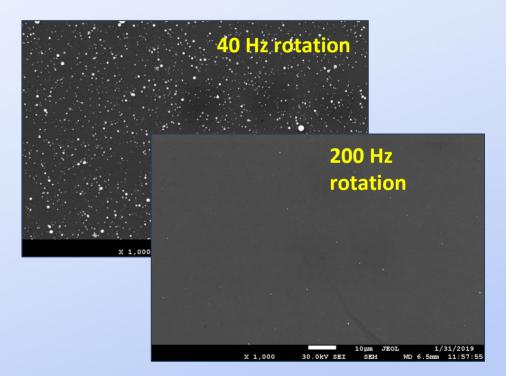
*: the first-mirror lifetime is defined as the period of 10% degradation in reflectance **: with shutting off the EUV beam for 5 minutes for membrane magazine replacement

For full-band (13.5nm $\pm 2\%$) conversion efficiency is $4\%@2\pi$, giving double brightness and double the collected EUV power.

Debris mitigation


Debris types: droplets and plasma/vapor.

- Magnetic field, gas counterflow, laser pulse profile optimization → plasma/vapor debris mitigation
- Fast target rotation → droplet debris mitigation
- EUV-transparent CNT^{*} membrane → ultimate solution for both types of debris


*CNT = carbon nanotube

Droplet debris mitigation: fast target rotation effect

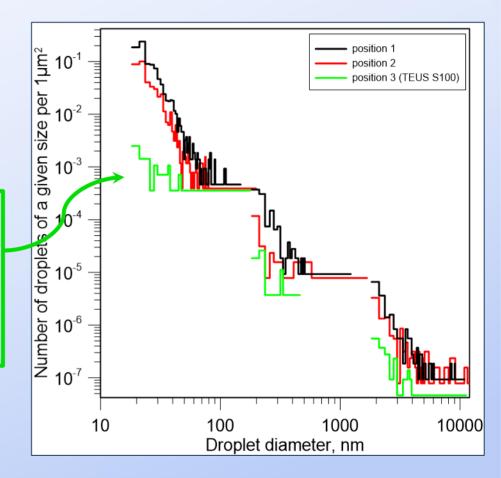
Fast rotating target is used to change direction of the droplet debris, deflect them from input laser and output EUV windows

Demonstration of droplets mitigation effect due to high rotation speed

SEM images of the witness samples located in output window after the same exposure time

Droplet debris mitigation: optimal EUV output direction

Sample contamination analysis:

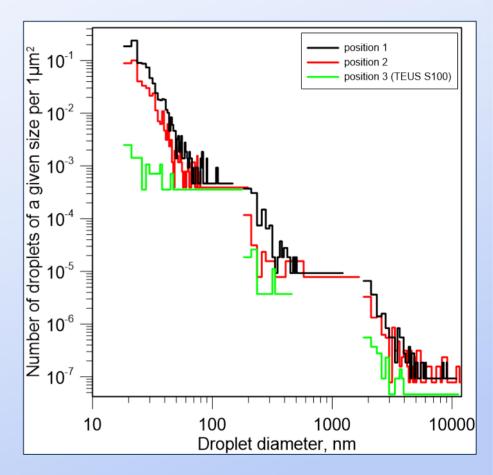

The number of droplets and their sizes were calculated from the SEM images of the Si witness samples.

The witness samples were located at different positions of the source chamber (experimental setups).

The amount of droplet debris significantly depends on the location of the output EUV window.

In TEUS-S100, the direction of the output cone is designed to minimize the amount of droplet debris.

Droplet debris size distribution

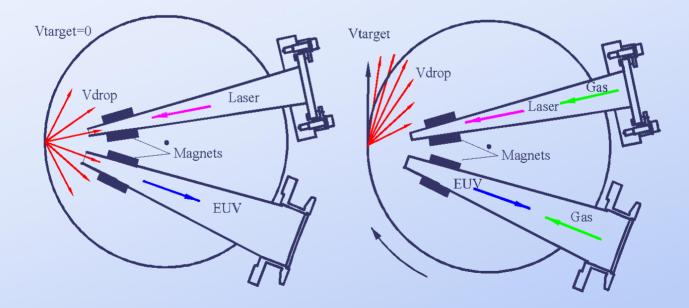

Number of droplets after 8 hours of sample exposure

Droplet debris mitigation: optimal EUV output direction

TEUS S100 first mirror lifetime calculation based on experimental data:

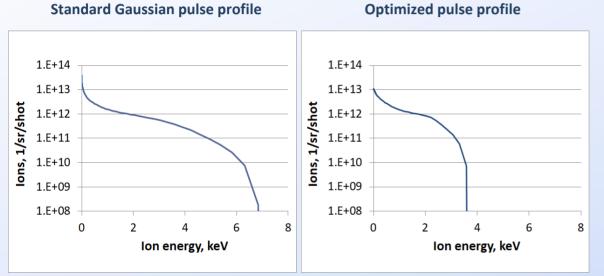
- → First mirror lifetime is mainly limited by the fraction of the area covered with droplets.
- → Data extrapolation: areal coverage with droplets is ~10% after one year of continuous operation.

Droplet debris size distribution

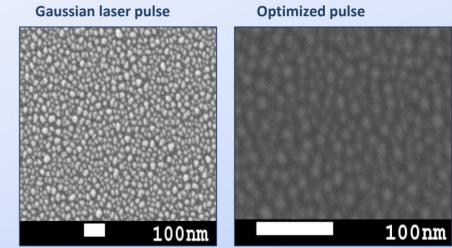


Number of droplets after 8 hours of sample exposure

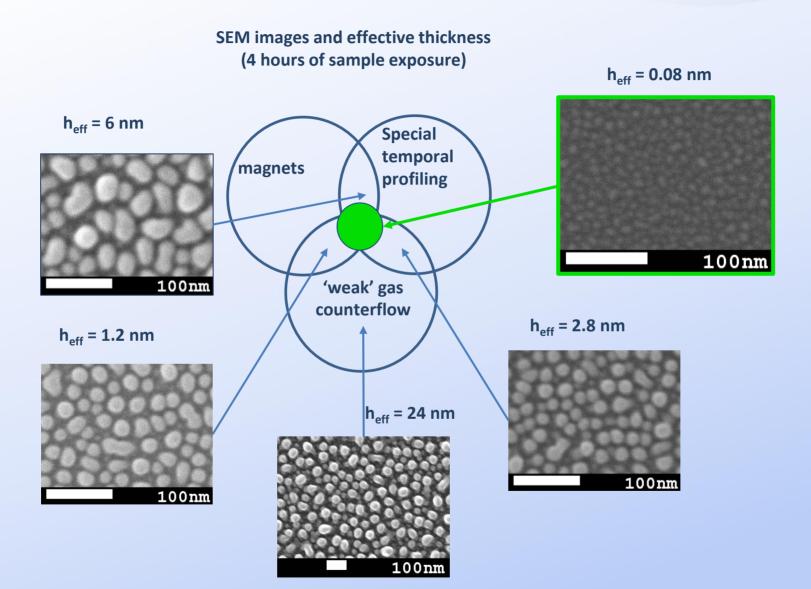
Plasma\vapor debris


Magnetic field, gas counterflow and temporal profiling of a laser pulse

- ★ Gas counterflow → stopping of Sn/In vapors + ion deceleration
- ★ Magnetic field \rightarrow ion deflection
- ★ Laser pulse profile optimization → lowering maximum ion energy for more effective ion mitigation by magnetic field

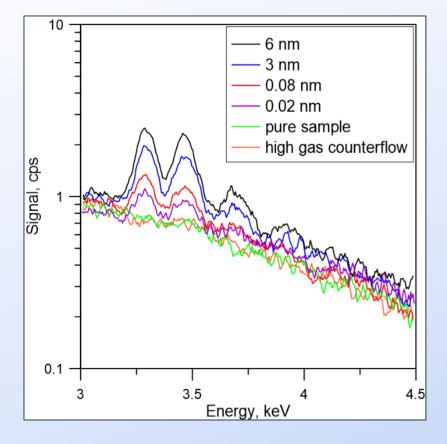


Plasma\vapor debris Temporal profiling of a laser pulse



SEM images of the witness samples. No magnets and no gas counterflow. 1 hour of exposure

Laser pulse profile optimization \rightarrow cut off high-energy ions and decrease the amount of ions


Plasma\vapor debris Combination of mitigation techniques

Plasma\vapor debris

'Strong' gas counterflow and first mirror lifetime estimates

Averaged EDX signals were recorded from area ~100 μm²

4 hours of sample exposure

In case "Strong gas counterflow" group of lines L_{α} , L_{β} , L_{γ} for In, Sn is not observed. If Sn and In are present on the sample, their amount not enough to detect them. The detection limit of the effective thickness, determined experimentally, is ~0.005 nm.

40 hours of sample exposure

For the case "Strong gas counterflow" additional sample was prepared, sample exposure time was 40 hours. Again, the EDX signal is indistinguishable from the pure sample signal, i.e. film grow rate is **<10e-4 nm/hour**.

The time of growth of 1.5 nm thickness film (transmits ~90% EUV) is > 15000 hours or almost two years of continuous operation.

Longer tests are in progress.

TEUS sources: optics lifetime

Laser average power	100 W	200 W	400 W
First mirror lifetime without using a CNT membrane filter in 24/7 mode of operation*	>12 month	>6 month	>3 month
First-mirror lifetime using a CNT membrane filter in 24/7 mode of operation*	>24 month	>12 month	>6 month

Contact us

Address: The Netherlands, Eindhoven, High Tech Campus 9, 5656AE Website: <u>www.isteq.nl</u> Phone: +31(0)40-230-42-42 E-mail: sales@isteq.nl

ISTEQ runs EUV Source program in close

collaboration with

