High-sensitivity hybrid EUV resist synthesis via vapor-phase infiltration

Nikhil Tiwale1, Ashwanth Subramanian2, Kim Kisslinger1, Ming Lu1, Aaron Stein1, Jiyoung Kim3, Chang-Yong Nam1,2

1Center for Functional Nanomaterials, Brookhaven National Laboratory
2Department of Materials Science & Chemical Engineering, Stony Brook University
3Materials Science and Engineering, The University of Texas at Dallas
Extreme ultraviolet (EUV) nanolithography resist challenges

Thinner Resist → Improved pattern transfer

High Etch resistance resist → Improved pattern transfer

Higher Resolution
High aspect ratio → Pattern collapse

Improved patterning
Low aspect ratio pattern transfer

Atomic absorption cross section

Organic

High aspect ratio
Pattern collapse

Inorganic

Improved pattern transfer

Brookhaven National Laboratory Center for Functional Nanomaterials
Infiltration synthesis using ALD system

ALD - Surface-limited reaction & thin film deposition

Infiltration synthesis: Precursor diffusion & binding
Infiltration synthesis of hybrid resists

Enhanced EUV Sensitivity (Improved Productivity)

- **Zn** (Zinc) 65.39
- **In** (Indium) 114.818
- **Sn** (Tin) 118.71
- **Hf** (Hafnium) 178.49

Tunability of compositional distribution

![Images showing compositional tunability](image)

Enhanced Etch Resistance

- **Si nano-fins aspect ratio ~17**
- **31.6 nm**
- **533 nm**

- **Etch Rate for Cryo Si Etch Recipe (nm/sec)**
 - ~70
 - ~300
 - SiO₂ Selectivity
 - ZEP Selectivity

- **Number of Infiltration Cycles**

Monotonic increase for AlO$_x$ infiltration - internal crosslinking

Al primed ZnO$_x$ & Al primed SnO$_x$, drop in critical dose with sufficiently high infiltration

Increased EUV absorption due to Zn or Sn maybe compensating increased dose requirement due to inter-crosslinking
Controllable ZnO_x infiltration into HSR & preliminary EUVL results

Controllable infiltration depths

Cross section of HSR-Z2C4 after post-infil bake

HSR-Z0C0

| 78 mJ/cm2 |

HSR-Z2C4

| 72 mJ/cm2 |
Acknowledgement

- Funding: U.S. Department of Energy
- Collaborators: J. Kim (UT Dallas), G. Freychet (NSLS II), E. Gann (NSLS II/NIST)
- EUV Lithography performed at CXRO (LBNL) Sponsored by C. Koh (Samsung Electronics)